Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ndconst Structured version   GIF version

Theorem 2ndconst 5782
 Description: The mapping of a restriction of the 2nd function to a converse constant function. (Contributed by NM, 27-Mar-2008.)
Assertion
Ref Expression
2ndconst (A 𝑉 → (2nd ↾ ({A} × B)):({A} × B)–1-1-ontoB)

Proof of Theorem 2ndconst
Dummy variables x y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snmg 3476 . . 3 (A 𝑉x x {A})
2 fo2ndresm 5728 . . 3 (x x {A} → (2nd ↾ ({A} × B)):({A} × B)–ontoB)
31, 2syl 14 . 2 (A 𝑉 → (2nd ↾ ({A} × B)):({A} × B)–ontoB)
4 moeq 2710 . . . . . 6 ∃*x x = ⟨A, y
54moani 1967 . . . . 5 ∃*x(y B x = ⟨A, y⟩)
6 vex 2554 . . . . . . . 8 y V
76brres 4560 . . . . . . 7 (x(2nd ↾ ({A} × B))y ↔ (x2nd y x ({A} × B)))
8 fo2nd 5724 . . . . . . . . . . 11 2nd :V–onto→V
9 fofn 5049 . . . . . . . . . . 11 (2nd :V–onto→V → 2nd Fn V)
108, 9ax-mp 7 . . . . . . . . . 10 2nd Fn V
11 vex 2554 . . . . . . . . . 10 x V
12 fnbrfvb 5155 . . . . . . . . . 10 ((2nd Fn V x V) → ((2ndx) = yx2nd y))
1310, 11, 12mp2an 402 . . . . . . . . 9 ((2ndx) = yx2nd y)
1413anbi1i 431 . . . . . . . 8 (((2ndx) = y x ({A} × B)) ↔ (x2nd y x ({A} × B)))
15 elxp7 5736 . . . . . . . . . . 11 (x ({A} × B) ↔ (x (V × V) ((1stx) {A} (2ndx) B)))
16 eleq1 2097 . . . . . . . . . . . . . . 15 ((2ndx) = y → ((2ndx) By B))
1716biimpa 280 . . . . . . . . . . . . . 14 (((2ndx) = y (2ndx) B) → y B)
1817adantrl 447 . . . . . . . . . . . . 13 (((2ndx) = y ((1stx) {A} (2ndx) B)) → y B)
1918adantrl 447 . . . . . . . . . . . 12 (((2ndx) = y (x (V × V) ((1stx) {A} (2ndx) B))) → y B)
20 elsni 3390 . . . . . . . . . . . . . 14 ((1stx) {A} → (1stx) = A)
21 eqopi 5737 . . . . . . . . . . . . . . . 16 ((x (V × V) ((1stx) = A (2ndx) = y)) → x = ⟨A, y⟩)
2221ancom2s 500 . . . . . . . . . . . . . . 15 ((x (V × V) ((2ndx) = y (1stx) = A)) → x = ⟨A, y⟩)
2322an12s 499 . . . . . . . . . . . . . 14 (((2ndx) = y (x (V × V) (1stx) = A)) → x = ⟨A, y⟩)
2420, 23sylanr2 385 . . . . . . . . . . . . 13 (((2ndx) = y (x (V × V) (1stx) {A})) → x = ⟨A, y⟩)
2524adantrrr 456 . . . . . . . . . . . 12 (((2ndx) = y (x (V × V) ((1stx) {A} (2ndx) B))) → x = ⟨A, y⟩)
2619, 25jca 290 . . . . . . . . . . 11 (((2ndx) = y (x (V × V) ((1stx) {A} (2ndx) B))) → (y B x = ⟨A, y⟩))
2715, 26sylan2b 271 . . . . . . . . . 10 (((2ndx) = y x ({A} × B)) → (y B x = ⟨A, y⟩))
2827adantl 262 . . . . . . . . 9 ((A 𝑉 ((2ndx) = y x ({A} × B))) → (y B x = ⟨A, y⟩))
29 fveq2 5119 . . . . . . . . . . . 12 (x = ⟨A, y⟩ → (2ndx) = (2nd ‘⟨A, y⟩))
30 op2ndg 5717 . . . . . . . . . . . . 13 ((A 𝑉 y V) → (2nd ‘⟨A, y⟩) = y)
316, 30mpan2 401 . . . . . . . . . . . 12 (A 𝑉 → (2nd ‘⟨A, y⟩) = y)
3229, 31sylan9eqr 2091 . . . . . . . . . . 11 ((A 𝑉 x = ⟨A, y⟩) → (2ndx) = y)
3332adantrl 447 . . . . . . . . . 10 ((A 𝑉 (y B x = ⟨A, y⟩)) → (2ndx) = y)
34 simprr 484 . . . . . . . . . . 11 ((A 𝑉 (y B x = ⟨A, y⟩)) → x = ⟨A, y⟩)
35 snidg 3391 . . . . . . . . . . . . 13 (A 𝑉A {A})
3635adantr 261 . . . . . . . . . . . 12 ((A 𝑉 (y B x = ⟨A, y⟩)) → A {A})
37 simprl 483 . . . . . . . . . . . 12 ((A 𝑉 (y B x = ⟨A, y⟩)) → y B)
38 opelxpi 4318 . . . . . . . . . . . 12 ((A {A} y B) → ⟨A, y ({A} × B))
3936, 37, 38syl2anc 391 . . . . . . . . . . 11 ((A 𝑉 (y B x = ⟨A, y⟩)) → ⟨A, y ({A} × B))
4034, 39eqeltrd 2111 . . . . . . . . . 10 ((A 𝑉 (y B x = ⟨A, y⟩)) → x ({A} × B))
4133, 40jca 290 . . . . . . . . 9 ((A 𝑉 (y B x = ⟨A, y⟩)) → ((2ndx) = y x ({A} × B)))
4228, 41impbida 528 . . . . . . . 8 (A 𝑉 → (((2ndx) = y x ({A} × B)) ↔ (y B x = ⟨A, y⟩)))
4314, 42syl5bbr 183 . . . . . . 7 (A 𝑉 → ((x2nd y x ({A} × B)) ↔ (y B x = ⟨A, y⟩)))
447, 43syl5bb 181 . . . . . 6 (A 𝑉 → (x(2nd ↾ ({A} × B))y ↔ (y B x = ⟨A, y⟩)))
4544mobidv 1933 . . . . 5 (A 𝑉 → (∃*x x(2nd ↾ ({A} × B))y∃*x(y B x = ⟨A, y⟩)))
465, 45mpbiri 157 . . . 4 (A 𝑉∃*x x(2nd ↾ ({A} × B))y)
4746alrimiv 1751 . . 3 (A 𝑉y∃*x x(2nd ↾ ({A} × B))y)
48 funcnv2 4900 . . 3 (Fun (2nd ↾ ({A} × B)) ↔ y∃*x x(2nd ↾ ({A} × B))y)
4947, 48sylibr 137 . 2 (A 𝑉 → Fun (2nd ↾ ({A} × B)))
50 dff1o3 5073 . 2 ((2nd ↾ ({A} × B)):({A} × B)–1-1-ontoB ↔ ((2nd ↾ ({A} × B)):({A} × B)–ontoB Fun (2nd ↾ ({A} × B))))
513, 49, 50sylanbrc 394 1 (A 𝑉 → (2nd ↾ ({A} × B)):({A} × B)–1-1-ontoB)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97   ↔ wb 98  ∀wal 1240   = wceq 1242  ∃wex 1378   ∈ wcel 1390  ∃*wmo 1898  Vcvv 2551  {csn 3366  ⟨cop 3369   class class class wbr 3754   × cxp 4285  ◡ccnv 4286   ↾ cres 4289  Fun wfun 4838   Fn wfn 4839  –onto→wfo 4842  –1-1-onto→wf1o 4843  ‘cfv 4844  1st c1st 5704  2nd c2nd 5705 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-13 1401  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3865  ax-pow 3917  ax-pr 3934  ax-un 4135 This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-rex 2306  df-rab 2309  df-v 2553  df-sbc 2759  df-csb 2847  df-un 2916  df-in 2918  df-ss 2925  df-pw 3352  df-sn 3372  df-pr 3373  df-op 3375  df-uni 3571  df-iun 3649  df-br 3755  df-opab 3809  df-mpt 3810  df-id 4020  df-xp 4293  df-rel 4294  df-cnv 4295  df-co 4296  df-dm 4297  df-rn 4298  df-res 4299  df-ima 4300  df-iota 4809  df-fun 4846  df-fn 4847  df-f 4848  df-f1 4849  df-fo 4850  df-f1o 4851  df-fv 4852  df-1st 5706  df-2nd 5707 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator