ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ndconst GIF version

Theorem 2ndconst 5843
Description: The mapping of a restriction of the 2nd function to a converse constant function. (Contributed by NM, 27-Mar-2008.)
Assertion
Ref Expression
2ndconst (𝐴𝑉 → (2nd ↾ ({𝐴} × 𝐵)):({𝐴} × 𝐵)–1-1-onto𝐵)

Proof of Theorem 2ndconst
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snmg 3486 . . 3 (𝐴𝑉 → ∃𝑥 𝑥 ∈ {𝐴})
2 fo2ndresm 5789 . . 3 (∃𝑥 𝑥 ∈ {𝐴} → (2nd ↾ ({𝐴} × 𝐵)):({𝐴} × 𝐵)–onto𝐵)
31, 2syl 14 . 2 (𝐴𝑉 → (2nd ↾ ({𝐴} × 𝐵)):({𝐴} × 𝐵)–onto𝐵)
4 moeq 2716 . . . . . 6 ∃*𝑥 𝑥 = ⟨𝐴, 𝑦
54moani 1970 . . . . 5 ∃*𝑥(𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)
6 vex 2560 . . . . . . . 8 𝑦 ∈ V
76brres 4618 . . . . . . 7 (𝑥(2nd ↾ ({𝐴} × 𝐵))𝑦 ↔ (𝑥2nd 𝑦𝑥 ∈ ({𝐴} × 𝐵)))
8 fo2nd 5785 . . . . . . . . . . 11 2nd :V–onto→V
9 fofn 5108 . . . . . . . . . . 11 (2nd :V–onto→V → 2nd Fn V)
108, 9ax-mp 7 . . . . . . . . . 10 2nd Fn V
11 vex 2560 . . . . . . . . . 10 𝑥 ∈ V
12 fnbrfvb 5214 . . . . . . . . . 10 ((2nd Fn V ∧ 𝑥 ∈ V) → ((2nd𝑥) = 𝑦𝑥2nd 𝑦))
1310, 11, 12mp2an 402 . . . . . . . . 9 ((2nd𝑥) = 𝑦𝑥2nd 𝑦)
1413anbi1i 431 . . . . . . . 8 (((2nd𝑥) = 𝑦𝑥 ∈ ({𝐴} × 𝐵)) ↔ (𝑥2nd 𝑦𝑥 ∈ ({𝐴} × 𝐵)))
15 elxp7 5797 . . . . . . . . . . 11 (𝑥 ∈ ({𝐴} × 𝐵) ↔ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ {𝐴} ∧ (2nd𝑥) ∈ 𝐵)))
16 eleq1 2100 . . . . . . . . . . . . . . 15 ((2nd𝑥) = 𝑦 → ((2nd𝑥) ∈ 𝐵𝑦𝐵))
1716biimpa 280 . . . . . . . . . . . . . 14 (((2nd𝑥) = 𝑦 ∧ (2nd𝑥) ∈ 𝐵) → 𝑦𝐵)
1817adantrl 447 . . . . . . . . . . . . 13 (((2nd𝑥) = 𝑦 ∧ ((1st𝑥) ∈ {𝐴} ∧ (2nd𝑥) ∈ 𝐵)) → 𝑦𝐵)
1918adantrl 447 . . . . . . . . . . . 12 (((2nd𝑥) = 𝑦 ∧ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ {𝐴} ∧ (2nd𝑥) ∈ 𝐵))) → 𝑦𝐵)
20 elsni 3393 . . . . . . . . . . . . . 14 ((1st𝑥) ∈ {𝐴} → (1st𝑥) = 𝐴)
21 eqopi 5798 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (V × V) ∧ ((1st𝑥) = 𝐴 ∧ (2nd𝑥) = 𝑦)) → 𝑥 = ⟨𝐴, 𝑦⟩)
2221ancom2s 500 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (V × V) ∧ ((2nd𝑥) = 𝑦 ∧ (1st𝑥) = 𝐴)) → 𝑥 = ⟨𝐴, 𝑦⟩)
2322an12s 499 . . . . . . . . . . . . . 14 (((2nd𝑥) = 𝑦 ∧ (𝑥 ∈ (V × V) ∧ (1st𝑥) = 𝐴)) → 𝑥 = ⟨𝐴, 𝑦⟩)
2420, 23sylanr2 385 . . . . . . . . . . . . 13 (((2nd𝑥) = 𝑦 ∧ (𝑥 ∈ (V × V) ∧ (1st𝑥) ∈ {𝐴})) → 𝑥 = ⟨𝐴, 𝑦⟩)
2524adantrrr 456 . . . . . . . . . . . 12 (((2nd𝑥) = 𝑦 ∧ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ {𝐴} ∧ (2nd𝑥) ∈ 𝐵))) → 𝑥 = ⟨𝐴, 𝑦⟩)
2619, 25jca 290 . . . . . . . . . . 11 (((2nd𝑥) = 𝑦 ∧ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ {𝐴} ∧ (2nd𝑥) ∈ 𝐵))) → (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩))
2715, 26sylan2b 271 . . . . . . . . . 10 (((2nd𝑥) = 𝑦𝑥 ∈ ({𝐴} × 𝐵)) → (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩))
2827adantl 262 . . . . . . . . 9 ((𝐴𝑉 ∧ ((2nd𝑥) = 𝑦𝑥 ∈ ({𝐴} × 𝐵))) → (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩))
29 fveq2 5178 . . . . . . . . . . . 12 (𝑥 = ⟨𝐴, 𝑦⟩ → (2nd𝑥) = (2nd ‘⟨𝐴, 𝑦⟩))
30 op2ndg 5778 . . . . . . . . . . . . 13 ((𝐴𝑉𝑦 ∈ V) → (2nd ‘⟨𝐴, 𝑦⟩) = 𝑦)
316, 30mpan2 401 . . . . . . . . . . . 12 (𝐴𝑉 → (2nd ‘⟨𝐴, 𝑦⟩) = 𝑦)
3229, 31sylan9eqr 2094 . . . . . . . . . . 11 ((𝐴𝑉𝑥 = ⟨𝐴, 𝑦⟩) → (2nd𝑥) = 𝑦)
3332adantrl 447 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)) → (2nd𝑥) = 𝑦)
34 simprr 484 . . . . . . . . . . 11 ((𝐴𝑉 ∧ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)) → 𝑥 = ⟨𝐴, 𝑦⟩)
35 snidg 3400 . . . . . . . . . . . . 13 (𝐴𝑉𝐴 ∈ {𝐴})
3635adantr 261 . . . . . . . . . . . 12 ((𝐴𝑉 ∧ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)) → 𝐴 ∈ {𝐴})
37 simprl 483 . . . . . . . . . . . 12 ((𝐴𝑉 ∧ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)) → 𝑦𝐵)
38 opelxpi 4376 . . . . . . . . . . . 12 ((𝐴 ∈ {𝐴} ∧ 𝑦𝐵) → ⟨𝐴, 𝑦⟩ ∈ ({𝐴} × 𝐵))
3936, 37, 38syl2anc 391 . . . . . . . . . . 11 ((𝐴𝑉 ∧ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)) → ⟨𝐴, 𝑦⟩ ∈ ({𝐴} × 𝐵))
4034, 39eqeltrd 2114 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)) → 𝑥 ∈ ({𝐴} × 𝐵))
4133, 40jca 290 . . . . . . . . 9 ((𝐴𝑉 ∧ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)) → ((2nd𝑥) = 𝑦𝑥 ∈ ({𝐴} × 𝐵)))
4228, 41impbida 528 . . . . . . . 8 (𝐴𝑉 → (((2nd𝑥) = 𝑦𝑥 ∈ ({𝐴} × 𝐵)) ↔ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)))
4314, 42syl5bbr 183 . . . . . . 7 (𝐴𝑉 → ((𝑥2nd 𝑦𝑥 ∈ ({𝐴} × 𝐵)) ↔ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)))
447, 43syl5bb 181 . . . . . 6 (𝐴𝑉 → (𝑥(2nd ↾ ({𝐴} × 𝐵))𝑦 ↔ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)))
4544mobidv 1936 . . . . 5 (𝐴𝑉 → (∃*𝑥 𝑥(2nd ↾ ({𝐴} × 𝐵))𝑦 ↔ ∃*𝑥(𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)))
465, 45mpbiri 157 . . . 4 (𝐴𝑉 → ∃*𝑥 𝑥(2nd ↾ ({𝐴} × 𝐵))𝑦)
4746alrimiv 1754 . . 3 (𝐴𝑉 → ∀𝑦∃*𝑥 𝑥(2nd ↾ ({𝐴} × 𝐵))𝑦)
48 funcnv2 4959 . . 3 (Fun (2nd ↾ ({𝐴} × 𝐵)) ↔ ∀𝑦∃*𝑥 𝑥(2nd ↾ ({𝐴} × 𝐵))𝑦)
4947, 48sylibr 137 . 2 (𝐴𝑉 → Fun (2nd ↾ ({𝐴} × 𝐵)))
50 dff1o3 5132 . 2 ((2nd ↾ ({𝐴} × 𝐵)):({𝐴} × 𝐵)–1-1-onto𝐵 ↔ ((2nd ↾ ({𝐴} × 𝐵)):({𝐴} × 𝐵)–onto𝐵 ∧ Fun (2nd ↾ ({𝐴} × 𝐵))))
513, 49, 50sylanbrc 394 1 (𝐴𝑉 → (2nd ↾ ({𝐴} × 𝐵)):({𝐴} × 𝐵)–1-1-onto𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98  wal 1241   = wceq 1243  wex 1381  wcel 1393  ∃*wmo 1901  Vcvv 2557  {csn 3375  cop 3378   class class class wbr 3764   × cxp 4343  ccnv 4344  cres 4347  Fun wfun 4896   Fn wfn 4897  ontowfo 4900  1-1-ontowf1o 4901  cfv 4902  1st c1st 5765  2nd c2nd 5766
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-1st 5767  df-2nd 5768
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator