ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  indifdir GIF version

Theorem indifdir 3193
Description: Distribute intersection over difference. (Contributed by Scott Fenton, 14-Apr-2011.)
Assertion
Ref Expression
indifdir ((𝐴𝐵) ∩ 𝐶) = ((𝐴𝐶) ∖ (𝐵𝐶))

Proof of Theorem indifdir
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elin 3126 . . . 4 (𝑥 ∈ (𝐴𝐶) ↔ (𝑥𝐴𝑥𝐶))
2 elin 3126 . . . . 5 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵𝑥𝐶))
32notbii 594 . . . 4 𝑥 ∈ (𝐵𝐶) ↔ ¬ (𝑥𝐵𝑥𝐶))
41, 3anbi12i 433 . . 3 ((𝑥 ∈ (𝐴𝐶) ∧ ¬ 𝑥 ∈ (𝐵𝐶)) ↔ ((𝑥𝐴𝑥𝐶) ∧ ¬ (𝑥𝐵𝑥𝐶)))
5 eldif 2927 . . 3 (𝑥 ∈ ((𝐴𝐶) ∖ (𝐵𝐶)) ↔ (𝑥 ∈ (𝐴𝐶) ∧ ¬ 𝑥 ∈ (𝐵𝐶)))
6 elin 3126 . . . . 5 (𝑥 ∈ ((𝐴𝐵) ∩ 𝐶) ↔ (𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐶))
7 eldif 2927 . . . . . 6 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
87anbi1i 431 . . . . 5 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐶) ↔ ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐶))
96, 8bitri 173 . . . 4 (𝑥 ∈ ((𝐴𝐵) ∩ 𝐶) ↔ ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐶))
10 an32 496 . . . . 5 (((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐶) ↔ ((𝑥𝐴𝑥𝐶) ∧ ¬ 𝑥𝐵))
11 simpl 102 . . . . . . . 8 ((𝑥𝐵𝑥𝐶) → 𝑥𝐵)
1211con3i 562 . . . . . . 7 𝑥𝐵 → ¬ (𝑥𝐵𝑥𝐶))
1312anim2i 324 . . . . . 6 (((𝑥𝐴𝑥𝐶) ∧ ¬ 𝑥𝐵) → ((𝑥𝐴𝑥𝐶) ∧ ¬ (𝑥𝐵𝑥𝐶)))
14 simpl 102 . . . . . . 7 (((𝑥𝐴𝑥𝐶) ∧ ¬ (𝑥𝐵𝑥𝐶)) → (𝑥𝐴𝑥𝐶))
15 ax-in2 545 . . . . . . . . . . 11 (¬ (𝑥𝐵𝑥𝐶) → ((𝑥𝐵𝑥𝐶) → ⊥))
1615expcomd 1330 . . . . . . . . . 10 (¬ (𝑥𝐵𝑥𝐶) → (𝑥𝐶 → (𝑥𝐵 → ⊥)))
1716impcom 116 . . . . . . . . 9 ((𝑥𝐶 ∧ ¬ (𝑥𝐵𝑥𝐶)) → (𝑥𝐵 → ⊥))
18 dfnot 1262 . . . . . . . . 9 𝑥𝐵 ↔ (𝑥𝐵 → ⊥))
1917, 18sylibr 137 . . . . . . . 8 ((𝑥𝐶 ∧ ¬ (𝑥𝐵𝑥𝐶)) → ¬ 𝑥𝐵)
2019adantll 445 . . . . . . 7 (((𝑥𝐴𝑥𝐶) ∧ ¬ (𝑥𝐵𝑥𝐶)) → ¬ 𝑥𝐵)
2114, 20jca 290 . . . . . 6 (((𝑥𝐴𝑥𝐶) ∧ ¬ (𝑥𝐵𝑥𝐶)) → ((𝑥𝐴𝑥𝐶) ∧ ¬ 𝑥𝐵))
2213, 21impbii 117 . . . . 5 (((𝑥𝐴𝑥𝐶) ∧ ¬ 𝑥𝐵) ↔ ((𝑥𝐴𝑥𝐶) ∧ ¬ (𝑥𝐵𝑥𝐶)))
2310, 22bitri 173 . . . 4 (((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐶) ↔ ((𝑥𝐴𝑥𝐶) ∧ ¬ (𝑥𝐵𝑥𝐶)))
249, 23bitri 173 . . 3 (𝑥 ∈ ((𝐴𝐵) ∩ 𝐶) ↔ ((𝑥𝐴𝑥𝐶) ∧ ¬ (𝑥𝐵𝑥𝐶)))
254, 5, 243bitr4ri 202 . 2 (𝑥 ∈ ((𝐴𝐵) ∩ 𝐶) ↔ 𝑥 ∈ ((𝐴𝐶) ∖ (𝐵𝐶)))
2625eqriv 2037 1 ((𝐴𝐵) ∩ 𝐶) = ((𝐴𝐶) ∖ (𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 97   = wceq 1243  wfal 1248  wcel 1393  cdif 2914  cin 2916
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-dif 2920  df-in 2924
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator