Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfmq0qs GIF version

Theorem dfmq0qs 6527
 Description: Multiplication on non-negative fractions. This definition is similar to df-mq0 6526 but expands Q0 (Contributed by Jim Kingdon, 22-Nov-2019.)
Assertion
Ref Expression
dfmq0qs ·Q0 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ((ω × N) / ~Q0 ) ∧ 𝑦 ∈ ((ω × N) / ~Q0 )) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q0𝑦 = [⟨𝑢, 𝑓⟩] ~Q0 ) ∧ 𝑧 = [⟨(𝑤 ·𝑜 𝑢), (𝑣 ·𝑜 𝑓)⟩] ~Q0 ))}
Distinct variable group:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑓

Proof of Theorem dfmq0qs
StepHypRef Expression
1 df-mq0 6526 . 2 ·Q0 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥Q0𝑦Q0) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q0𝑦 = [⟨𝑢, 𝑓⟩] ~Q0 ) ∧ 𝑧 = [⟨(𝑤 ·𝑜 𝑢), (𝑣 ·𝑜 𝑓)⟩] ~Q0 ))}
2 df-nq0 6523 . . . . . 6 Q0 = ((ω × N) / ~Q0 )
32eleq2i 2104 . . . . 5 (𝑥Q0𝑥 ∈ ((ω × N) / ~Q0 ))
42eleq2i 2104 . . . . 5 (𝑦Q0𝑦 ∈ ((ω × N) / ~Q0 ))
53, 4anbi12i 433 . . . 4 ((𝑥Q0𝑦Q0) ↔ (𝑥 ∈ ((ω × N) / ~Q0 ) ∧ 𝑦 ∈ ((ω × N) / ~Q0 )))
65anbi1i 431 . . 3 (((𝑥Q0𝑦Q0) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q0𝑦 = [⟨𝑢, 𝑓⟩] ~Q0 ) ∧ 𝑧 = [⟨(𝑤 ·𝑜 𝑢), (𝑣 ·𝑜 𝑓)⟩] ~Q0 )) ↔ ((𝑥 ∈ ((ω × N) / ~Q0 ) ∧ 𝑦 ∈ ((ω × N) / ~Q0 )) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q0𝑦 = [⟨𝑢, 𝑓⟩] ~Q0 ) ∧ 𝑧 = [⟨(𝑤 ·𝑜 𝑢), (𝑣 ·𝑜 𝑓)⟩] ~Q0 )))
76oprabbii 5560 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥Q0𝑦Q0) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q0𝑦 = [⟨𝑢, 𝑓⟩] ~Q0 ) ∧ 𝑧 = [⟨(𝑤 ·𝑜 𝑢), (𝑣 ·𝑜 𝑓)⟩] ~Q0 ))} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ((ω × N) / ~Q0 ) ∧ 𝑦 ∈ ((ω × N) / ~Q0 )) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q0𝑦 = [⟨𝑢, 𝑓⟩] ~Q0 ) ∧ 𝑧 = [⟨(𝑤 ·𝑜 𝑢), (𝑣 ·𝑜 𝑓)⟩] ~Q0 ))}
81, 7eqtri 2060 1 ·Q0 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ((ω × N) / ~Q0 ) ∧ 𝑦 ∈ ((ω × N) / ~Q0 )) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~Q0𝑦 = [⟨𝑢, 𝑓⟩] ~Q0 ) ∧ 𝑧 = [⟨(𝑤 ·𝑜 𝑢), (𝑣 ·𝑜 𝑓)⟩] ~Q0 ))}
 Colors of variables: wff set class Syntax hints:   ∧ wa 97   = wceq 1243  ∃wex 1381   ∈ wcel 1393  ⟨cop 3378  ωcom 4313   × cxp 4343  (class class class)co 5512  {coprab 5513   ·𝑜 comu 5999  [cec 6104   / cqs 6105  Ncnpi 6370   ~Q0 ceq0 6384  Q0cnq0 6385   ·Q0 cmq0 6388 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-11 1397  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-oprab 5516  df-nq0 6523  df-mq0 6526 This theorem is referenced by:  mulnnnq0  6548
 Copyright terms: Public domain W3C validator