ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulnnnq0 GIF version

Theorem mulnnnq0 6548
Description: Multiplication of non-negative fractions in terms of natural numbers. (Contributed by Jim Kingdon, 19-Nov-2019.)
Assertion
Ref Expression
mulnnnq0 (((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → ([⟨𝐴, 𝐵⟩] ~Q0 ·Q0 [⟨𝐶, 𝐷⟩] ~Q0 ) = [⟨(𝐴 ·𝑜 𝐶), (𝐵 ·𝑜 𝐷)⟩] ~Q0 )

Proof of Theorem mulnnnq0
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opelxpi 4376 . . . 4 ((𝐴 ∈ ω ∧ 𝐵N) → ⟨𝐴, 𝐵⟩ ∈ (ω × N))
2 enq0ex 6537 . . . . 5 ~Q0 ∈ V
32ecelqsi 6160 . . . 4 (⟨𝐴, 𝐵⟩ ∈ (ω × N) → [⟨𝐴, 𝐵⟩] ~Q0 ∈ ((ω × N) / ~Q0 ))
41, 3syl 14 . . 3 ((𝐴 ∈ ω ∧ 𝐵N) → [⟨𝐴, 𝐵⟩] ~Q0 ∈ ((ω × N) / ~Q0 ))
5 opelxpi 4376 . . . 4 ((𝐶 ∈ ω ∧ 𝐷N) → ⟨𝐶, 𝐷⟩ ∈ (ω × N))
62ecelqsi 6160 . . . 4 (⟨𝐶, 𝐷⟩ ∈ (ω × N) → [⟨𝐶, 𝐷⟩] ~Q0 ∈ ((ω × N) / ~Q0 ))
75, 6syl 14 . . 3 ((𝐶 ∈ ω ∧ 𝐷N) → [⟨𝐶, 𝐷⟩] ~Q0 ∈ ((ω × N) / ~Q0 ))
84, 7anim12i 321 . 2 (((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → ([⟨𝐴, 𝐵⟩] ~Q0 ∈ ((ω × N) / ~Q0 ) ∧ [⟨𝐶, 𝐷⟩] ~Q0 ∈ ((ω × N) / ~Q0 )))
9 eqid 2040 . . . 4 [⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝐴, 𝐵⟩] ~Q0
10 eqid 2040 . . . 4 [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0
119, 10pm3.2i 257 . . 3 ([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝐴, 𝐵⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 )
12 eqid 2040 . . 3 [⟨(𝐴 ·𝑜 𝐶), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨(𝐴 ·𝑜 𝐶), (𝐵 ·𝑜 𝐷)⟩] ~Q0
13 opeq12 3551 . . . . . 6 ((𝑤 = 𝐴𝑣 = 𝐵) → ⟨𝑤, 𝑣⟩ = ⟨𝐴, 𝐵⟩)
14 eceq1 6141 . . . . . . . . 9 (⟨𝑤, 𝑣⟩ = ⟨𝐴, 𝐵⟩ → [⟨𝑤, 𝑣⟩] ~Q0 = [⟨𝐴, 𝐵⟩] ~Q0 )
1514eqeq2d 2051 . . . . . . . 8 (⟨𝑤, 𝑣⟩ = ⟨𝐴, 𝐵⟩ → ([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ↔ [⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝐴, 𝐵⟩] ~Q0 ))
1615anbi1d 438 . . . . . . 7 (⟨𝑤, 𝑣⟩ = ⟨𝐴, 𝐵⟩ → (([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ↔ ([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝐴, 𝐵⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 )))
17 vex 2560 . . . . . . . . . . 11 𝑤 ∈ V
18 vex 2560 . . . . . . . . . . 11 𝑣 ∈ V
1917, 18opth 3974 . . . . . . . . . 10 (⟨𝑤, 𝑣⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝑤 = 𝐴𝑣 = 𝐵))
20 oveq1 5519 . . . . . . . . . . . 12 (𝑤 = 𝐴 → (𝑤 ·𝑜 𝐶) = (𝐴 ·𝑜 𝐶))
2120adantr 261 . . . . . . . . . . 11 ((𝑤 = 𝐴𝑣 = 𝐵) → (𝑤 ·𝑜 𝐶) = (𝐴 ·𝑜 𝐶))
22 oveq1 5519 . . . . . . . . . . . 12 (𝑣 = 𝐵 → (𝑣 ·𝑜 𝐷) = (𝐵 ·𝑜 𝐷))
2322adantl 262 . . . . . . . . . . 11 ((𝑤 = 𝐴𝑣 = 𝐵) → (𝑣 ·𝑜 𝐷) = (𝐵 ·𝑜 𝐷))
2421, 23opeq12d 3557 . . . . . . . . . 10 ((𝑤 = 𝐴𝑣 = 𝐵) → ⟨(𝑤 ·𝑜 𝐶), (𝑣 ·𝑜 𝐷)⟩ = ⟨(𝐴 ·𝑜 𝐶), (𝐵 ·𝑜 𝐷)⟩)
2519, 24sylbi 114 . . . . . . . . 9 (⟨𝑤, 𝑣⟩ = ⟨𝐴, 𝐵⟩ → ⟨(𝑤 ·𝑜 𝐶), (𝑣 ·𝑜 𝐷)⟩ = ⟨(𝐴 ·𝑜 𝐶), (𝐵 ·𝑜 𝐷)⟩)
2625eceq1d 6142 . . . . . . . 8 (⟨𝑤, 𝑣⟩ = ⟨𝐴, 𝐵⟩ → [⟨(𝑤 ·𝑜 𝐶), (𝑣 ·𝑜 𝐷)⟩] ~Q0 = [⟨(𝐴 ·𝑜 𝐶), (𝐵 ·𝑜 𝐷)⟩] ~Q0 )
2726eqeq2d 2051 . . . . . . 7 (⟨𝑤, 𝑣⟩ = ⟨𝐴, 𝐵⟩ → ([⟨(𝐴 ·𝑜 𝐶), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨(𝑤 ·𝑜 𝐶), (𝑣 ·𝑜 𝐷)⟩] ~Q0 ↔ [⟨(𝐴 ·𝑜 𝐶), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨(𝐴 ·𝑜 𝐶), (𝐵 ·𝑜 𝐷)⟩] ~Q0 ))
2816, 27anbi12d 442 . . . . . 6 (⟨𝑤, 𝑣⟩ = ⟨𝐴, 𝐵⟩ → ((([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ∧ [⟨(𝐴 ·𝑜 𝐶), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨(𝑤 ·𝑜 𝐶), (𝑣 ·𝑜 𝐷)⟩] ~Q0 ) ↔ (([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝐴, 𝐵⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ∧ [⟨(𝐴 ·𝑜 𝐶), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨(𝐴 ·𝑜 𝐶), (𝐵 ·𝑜 𝐷)⟩] ~Q0 )))
2913, 28syl 14 . . . . 5 ((𝑤 = 𝐴𝑣 = 𝐵) → ((([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ∧ [⟨(𝐴 ·𝑜 𝐶), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨(𝑤 ·𝑜 𝐶), (𝑣 ·𝑜 𝐷)⟩] ~Q0 ) ↔ (([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝐴, 𝐵⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ∧ [⟨(𝐴 ·𝑜 𝐶), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨(𝐴 ·𝑜 𝐶), (𝐵 ·𝑜 𝐷)⟩] ~Q0 )))
3029spc2egv 2642 . . . 4 ((𝐴 ∈ ω ∧ 𝐵N) → ((([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝐴, 𝐵⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ∧ [⟨(𝐴 ·𝑜 𝐶), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨(𝐴 ·𝑜 𝐶), (𝐵 ·𝑜 𝐷)⟩] ~Q0 ) → ∃𝑤𝑣(([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ∧ [⟨(𝐴 ·𝑜 𝐶), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨(𝑤 ·𝑜 𝐶), (𝑣 ·𝑜 𝐷)⟩] ~Q0 )))
31 opeq12 3551 . . . . . . 7 ((𝑢 = 𝐶𝑡 = 𝐷) → ⟨𝑢, 𝑡⟩ = ⟨𝐶, 𝐷⟩)
32 eceq1 6141 . . . . . . . . . 10 (⟨𝑢, 𝑡⟩ = ⟨𝐶, 𝐷⟩ → [⟨𝑢, 𝑡⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 )
3332eqeq2d 2051 . . . . . . . . 9 (⟨𝑢, 𝑡⟩ = ⟨𝐶, 𝐷⟩ → ([⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ↔ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ))
3433anbi2d 437 . . . . . . . 8 (⟨𝑢, 𝑡⟩ = ⟨𝐶, 𝐷⟩ → (([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ↔ ([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 )))
35 vex 2560 . . . . . . . . . . . 12 𝑢 ∈ V
36 vex 2560 . . . . . . . . . . . 12 𝑡 ∈ V
3735, 36opth 3974 . . . . . . . . . . 11 (⟨𝑢, 𝑡⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝑢 = 𝐶𝑡 = 𝐷))
38 oveq2 5520 . . . . . . . . . . . . 13 (𝑢 = 𝐶 → (𝑤 ·𝑜 𝑢) = (𝑤 ·𝑜 𝐶))
3938adantr 261 . . . . . . . . . . . 12 ((𝑢 = 𝐶𝑡 = 𝐷) → (𝑤 ·𝑜 𝑢) = (𝑤 ·𝑜 𝐶))
40 oveq2 5520 . . . . . . . . . . . . 13 (𝑡 = 𝐷 → (𝑣 ·𝑜 𝑡) = (𝑣 ·𝑜 𝐷))
4140adantl 262 . . . . . . . . . . . 12 ((𝑢 = 𝐶𝑡 = 𝐷) → (𝑣 ·𝑜 𝑡) = (𝑣 ·𝑜 𝐷))
4239, 41opeq12d 3557 . . . . . . . . . . 11 ((𝑢 = 𝐶𝑡 = 𝐷) → ⟨(𝑤 ·𝑜 𝑢), (𝑣 ·𝑜 𝑡)⟩ = ⟨(𝑤 ·𝑜 𝐶), (𝑣 ·𝑜 𝐷)⟩)
4337, 42sylbi 114 . . . . . . . . . 10 (⟨𝑢, 𝑡⟩ = ⟨𝐶, 𝐷⟩ → ⟨(𝑤 ·𝑜 𝑢), (𝑣 ·𝑜 𝑡)⟩ = ⟨(𝑤 ·𝑜 𝐶), (𝑣 ·𝑜 𝐷)⟩)
4443eceq1d 6142 . . . . . . . . 9 (⟨𝑢, 𝑡⟩ = ⟨𝐶, 𝐷⟩ → [⟨(𝑤 ·𝑜 𝑢), (𝑣 ·𝑜 𝑡)⟩] ~Q0 = [⟨(𝑤 ·𝑜 𝐶), (𝑣 ·𝑜 𝐷)⟩] ~Q0 )
4544eqeq2d 2051 . . . . . . . 8 (⟨𝑢, 𝑡⟩ = ⟨𝐶, 𝐷⟩ → ([⟨(𝐴 ·𝑜 𝐶), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨(𝑤 ·𝑜 𝑢), (𝑣 ·𝑜 𝑡)⟩] ~Q0 ↔ [⟨(𝐴 ·𝑜 𝐶), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨(𝑤 ·𝑜 𝐶), (𝑣 ·𝑜 𝐷)⟩] ~Q0 ))
4634, 45anbi12d 442 . . . . . . 7 (⟨𝑢, 𝑡⟩ = ⟨𝐶, 𝐷⟩ → ((([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨(𝐴 ·𝑜 𝐶), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨(𝑤 ·𝑜 𝑢), (𝑣 ·𝑜 𝑡)⟩] ~Q0 ) ↔ (([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ∧ [⟨(𝐴 ·𝑜 𝐶), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨(𝑤 ·𝑜 𝐶), (𝑣 ·𝑜 𝐷)⟩] ~Q0 )))
4731, 46syl 14 . . . . . 6 ((𝑢 = 𝐶𝑡 = 𝐷) → ((([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨(𝐴 ·𝑜 𝐶), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨(𝑤 ·𝑜 𝑢), (𝑣 ·𝑜 𝑡)⟩] ~Q0 ) ↔ (([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ∧ [⟨(𝐴 ·𝑜 𝐶), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨(𝑤 ·𝑜 𝐶), (𝑣 ·𝑜 𝐷)⟩] ~Q0 )))
4847spc2egv 2642 . . . . 5 ((𝐶 ∈ ω ∧ 𝐷N) → ((([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ∧ [⟨(𝐴 ·𝑜 𝐶), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨(𝑤 ·𝑜 𝐶), (𝑣 ·𝑜 𝐷)⟩] ~Q0 ) → ∃𝑢𝑡(([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨(𝐴 ·𝑜 𝐶), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨(𝑤 ·𝑜 𝑢), (𝑣 ·𝑜 𝑡)⟩] ~Q0 )))
49482eximdv 1762 . . . 4 ((𝐶 ∈ ω ∧ 𝐷N) → (∃𝑤𝑣(([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ∧ [⟨(𝐴 ·𝑜 𝐶), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨(𝑤 ·𝑜 𝐶), (𝑣 ·𝑜 𝐷)⟩] ~Q0 ) → ∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨(𝐴 ·𝑜 𝐶), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨(𝑤 ·𝑜 𝑢), (𝑣 ·𝑜 𝑡)⟩] ~Q0 )))
5030, 49sylan9 389 . . 3 (((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → ((([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝐴, 𝐵⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ∧ [⟨(𝐴 ·𝑜 𝐶), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨(𝐴 ·𝑜 𝐶), (𝐵 ·𝑜 𝐷)⟩] ~Q0 ) → ∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨(𝐴 ·𝑜 𝐶), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨(𝑤 ·𝑜 𝑢), (𝑣 ·𝑜 𝑡)⟩] ~Q0 )))
5111, 12, 50mp2ani 408 . 2 (((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → ∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨(𝐴 ·𝑜 𝐶), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨(𝑤 ·𝑜 𝑢), (𝑣 ·𝑜 𝑡)⟩] ~Q0 ))
52 ecexg 6110 . . . 4 ( ~Q0 ∈ V → [⟨(𝐴 ·𝑜 𝐶), (𝐵 ·𝑜 𝐷)⟩] ~Q0 ∈ V)
532, 52ax-mp 7 . . 3 [⟨(𝐴 ·𝑜 𝐶), (𝐵 ·𝑜 𝐷)⟩] ~Q0 ∈ V
54 eqeq1 2046 . . . . . . . 8 (𝑥 = [⟨𝐴, 𝐵⟩] ~Q0 → (𝑥 = [⟨𝑤, 𝑣⟩] ~Q0 ↔ [⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ))
55 eqeq1 2046 . . . . . . . 8 (𝑦 = [⟨𝐶, 𝐷⟩] ~Q0 → (𝑦 = [⟨𝑢, 𝑡⟩] ~Q0 ↔ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ))
5654, 55bi2anan9 538 . . . . . . 7 ((𝑥 = [⟨𝐴, 𝐵⟩] ~Q0𝑦 = [⟨𝐶, 𝐷⟩] ~Q0 ) → ((𝑥 = [⟨𝑤, 𝑣⟩] ~Q0𝑦 = [⟨𝑢, 𝑡⟩] ~Q0 ) ↔ ([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 )))
57 eqeq1 2046 . . . . . . 7 (𝑧 = [⟨(𝐴 ·𝑜 𝐶), (𝐵 ·𝑜 𝐷)⟩] ~Q0 → (𝑧 = [⟨(𝑤 ·𝑜 𝑢), (𝑣 ·𝑜 𝑡)⟩] ~Q0 ↔ [⟨(𝐴 ·𝑜 𝐶), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨(𝑤 ·𝑜 𝑢), (𝑣 ·𝑜 𝑡)⟩] ~Q0 ))
5856, 57bi2anan9 538 . . . . . 6 (((𝑥 = [⟨𝐴, 𝐵⟩] ~Q0𝑦 = [⟨𝐶, 𝐷⟩] ~Q0 ) ∧ 𝑧 = [⟨(𝐴 ·𝑜 𝐶), (𝐵 ·𝑜 𝐷)⟩] ~Q0 ) → (((𝑥 = [⟨𝑤, 𝑣⟩] ~Q0𝑦 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨(𝑤 ·𝑜 𝑢), (𝑣 ·𝑜 𝑡)⟩] ~Q0 ) ↔ (([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨(𝐴 ·𝑜 𝐶), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨(𝑤 ·𝑜 𝑢), (𝑣 ·𝑜 𝑡)⟩] ~Q0 )))
59583impa 1099 . . . . 5 ((𝑥 = [⟨𝐴, 𝐵⟩] ~Q0𝑦 = [⟨𝐶, 𝐷⟩] ~Q0𝑧 = [⟨(𝐴 ·𝑜 𝐶), (𝐵 ·𝑜 𝐷)⟩] ~Q0 ) → (((𝑥 = [⟨𝑤, 𝑣⟩] ~Q0𝑦 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨(𝑤 ·𝑜 𝑢), (𝑣 ·𝑜 𝑡)⟩] ~Q0 ) ↔ (([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨(𝐴 ·𝑜 𝐶), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨(𝑤 ·𝑜 𝑢), (𝑣 ·𝑜 𝑡)⟩] ~Q0 )))
60594exbidv 1750 . . . 4 ((𝑥 = [⟨𝐴, 𝐵⟩] ~Q0𝑦 = [⟨𝐶, 𝐷⟩] ~Q0𝑧 = [⟨(𝐴 ·𝑜 𝐶), (𝐵 ·𝑜 𝐷)⟩] ~Q0 ) → (∃𝑤𝑣𝑢𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ~Q0𝑦 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨(𝑤 ·𝑜 𝑢), (𝑣 ·𝑜 𝑡)⟩] ~Q0 ) ↔ ∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨(𝐴 ·𝑜 𝐶), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨(𝑤 ·𝑜 𝑢), (𝑣 ·𝑜 𝑡)⟩] ~Q0 )))
61 mulnq0mo 6546 . . . 4 ((𝑥 ∈ ((ω × N) / ~Q0 ) ∧ 𝑦 ∈ ((ω × N) / ~Q0 )) → ∃*𝑧𝑤𝑣𝑢𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ~Q0𝑦 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨(𝑤 ·𝑜 𝑢), (𝑣 ·𝑜 𝑡)⟩] ~Q0 ))
62 dfmq0qs 6527 . . . 4 ·Q0 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ((ω × N) / ~Q0 ) ∧ 𝑦 ∈ ((ω × N) / ~Q0 )) ∧ ∃𝑤𝑣𝑢𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ~Q0𝑦 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨(𝑤 ·𝑜 𝑢), (𝑣 ·𝑜 𝑡)⟩] ~Q0 ))}
6360, 61, 62ovig 5622 . . 3 (([⟨𝐴, 𝐵⟩] ~Q0 ∈ ((ω × N) / ~Q0 ) ∧ [⟨𝐶, 𝐷⟩] ~Q0 ∈ ((ω × N) / ~Q0 ) ∧ [⟨(𝐴 ·𝑜 𝐶), (𝐵 ·𝑜 𝐷)⟩] ~Q0 ∈ V) → (∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨(𝐴 ·𝑜 𝐶), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨(𝑤 ·𝑜 𝑢), (𝑣 ·𝑜 𝑡)⟩] ~Q0 ) → ([⟨𝐴, 𝐵⟩] ~Q0 ·Q0 [⟨𝐶, 𝐷⟩] ~Q0 ) = [⟨(𝐴 ·𝑜 𝐶), (𝐵 ·𝑜 𝐷)⟩] ~Q0 ))
6453, 63mp3an3 1221 . 2 (([⟨𝐴, 𝐵⟩] ~Q0 ∈ ((ω × N) / ~Q0 ) ∧ [⟨𝐶, 𝐷⟩] ~Q0 ∈ ((ω × N) / ~Q0 )) → (∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨(𝐴 ·𝑜 𝐶), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨(𝑤 ·𝑜 𝑢), (𝑣 ·𝑜 𝑡)⟩] ~Q0 ) → ([⟨𝐴, 𝐵⟩] ~Q0 ·Q0 [⟨𝐶, 𝐷⟩] ~Q0 ) = [⟨(𝐴 ·𝑜 𝐶), (𝐵 ·𝑜 𝐷)⟩] ~Q0 ))
658, 51, 64sylc 56 1 (((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → ([⟨𝐴, 𝐵⟩] ~Q0 ·Q0 [⟨𝐶, 𝐷⟩] ~Q0 ) = [⟨(𝐴 ·𝑜 𝐶), (𝐵 ·𝑜 𝐷)⟩] ~Q0 )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98  w3a 885   = wceq 1243  wex 1381  wcel 1393  Vcvv 2557  cop 3378  ωcom 4313   × cxp 4343  (class class class)co 5512   ·𝑜 comu 5999  [cec 6104   / cqs 6105  Ncnpi 6370   ~Q0 ceq0 6384   ·Q0 cmq0 6388
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-id 4030  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-mi 6404  df-enq0 6522  df-nq0 6523  df-mq0 6526
This theorem is referenced by:  mulclnq0  6550  nqnq0m  6553  nq0m0r  6554  distrnq0  6557  mulcomnq0  6558  nq02m  6563
  Copyright terms: Public domain W3C validator