ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dminss GIF version

Theorem dminss 4716
Description: An upper bound for intersection with a domain. Theorem 40 of [Suppes] p. 66, who calls it "somewhat surprising." (Contributed by NM, 11-Aug-2004.)
Assertion
Ref Expression
dminss (dom 𝑅𝐴) ⊆ (𝑅 “ (𝑅𝐴))

Proof of Theorem dminss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.8a 1482 . . . . . . 7 ((𝑥𝐴𝑥𝑅𝑦) → ∃𝑥(𝑥𝐴𝑥𝑅𝑦))
21ancoms 255 . . . . . 6 ((𝑥𝑅𝑦𝑥𝐴) → ∃𝑥(𝑥𝐴𝑥𝑅𝑦))
3 vex 2557 . . . . . . 7 𝑦 ∈ V
43elima2 4652 . . . . . 6 (𝑦 ∈ (𝑅𝐴) ↔ ∃𝑥(𝑥𝐴𝑥𝑅𝑦))
52, 4sylibr 137 . . . . 5 ((𝑥𝑅𝑦𝑥𝐴) → 𝑦 ∈ (𝑅𝐴))
6 simpl 102 . . . . . 6 ((𝑥𝑅𝑦𝑥𝐴) → 𝑥𝑅𝑦)
7 vex 2557 . . . . . . 7 𝑥 ∈ V
83, 7brcnv 4496 . . . . . 6 (𝑦𝑅𝑥𝑥𝑅𝑦)
96, 8sylibr 137 . . . . 5 ((𝑥𝑅𝑦𝑥𝐴) → 𝑦𝑅𝑥)
105, 9jca 290 . . . 4 ((𝑥𝑅𝑦𝑥𝐴) → (𝑦 ∈ (𝑅𝐴) ∧ 𝑦𝑅𝑥))
1110eximi 1491 . . 3 (∃𝑦(𝑥𝑅𝑦𝑥𝐴) → ∃𝑦(𝑦 ∈ (𝑅𝐴) ∧ 𝑦𝑅𝑥))
127eldm 4510 . . . . 5 (𝑥 ∈ dom 𝑅 ↔ ∃𝑦 𝑥𝑅𝑦)
1312anbi1i 431 . . . 4 ((𝑥 ∈ dom 𝑅𝑥𝐴) ↔ (∃𝑦 𝑥𝑅𝑦𝑥𝐴))
14 elin 3123 . . . 4 (𝑥 ∈ (dom 𝑅𝐴) ↔ (𝑥 ∈ dom 𝑅𝑥𝐴))
15 19.41v 1782 . . . 4 (∃𝑦(𝑥𝑅𝑦𝑥𝐴) ↔ (∃𝑦 𝑥𝑅𝑦𝑥𝐴))
1613, 14, 153bitr4i 201 . . 3 (𝑥 ∈ (dom 𝑅𝐴) ↔ ∃𝑦(𝑥𝑅𝑦𝑥𝐴))
177elima2 4652 . . 3 (𝑥 ∈ (𝑅 “ (𝑅𝐴)) ↔ ∃𝑦(𝑦 ∈ (𝑅𝐴) ∧ 𝑦𝑅𝑥))
1811, 16, 173imtr4i 190 . 2 (𝑥 ∈ (dom 𝑅𝐴) → 𝑥 ∈ (𝑅 “ (𝑅𝐴)))
1918ssriv 2946 1 (dom 𝑅𝐴) ⊆ (𝑅 “ (𝑅𝐴))
Colors of variables: wff set class
Syntax hints:  wa 97  wex 1381  wcel 1393  cin 2913  wss 2914   class class class wbr 3761  ccnv 4322  dom cdm 4323  cima 4326
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3872  ax-pow 3924  ax-pr 3941
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2308  df-rex 2309  df-v 2556  df-un 2919  df-in 2921  df-ss 2928  df-pw 3358  df-sn 3378  df-pr 3379  df-op 3381  df-br 3762  df-opab 3816  df-xp 4329  df-cnv 4331  df-dm 4333  df-rn 4334  df-res 4335  df-ima 4336
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator