Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  imaundir Structured version   GIF version

Theorem imaundir 4680
 Description: The image of a union. (Contributed by Jeff Hoffman, 17-Feb-2008.)
Assertion
Ref Expression
imaundir ((AB) “ 𝐶) = ((A𝐶) ∪ (B𝐶))

Proof of Theorem imaundir
StepHypRef Expression
1 df-ima 4301 . . 3 ((AB) “ 𝐶) = ran ((AB) ↾ 𝐶)
2 resundir 4569 . . . 4 ((AB) ↾ 𝐶) = ((A𝐶) ∪ (B𝐶))
32rneqi 4505 . . 3 ran ((AB) ↾ 𝐶) = ran ((A𝐶) ∪ (B𝐶))
4 rnun 4675 . . 3 ran ((A𝐶) ∪ (B𝐶)) = (ran (A𝐶) ∪ ran (B𝐶))
51, 3, 43eqtri 2061 . 2 ((AB) “ 𝐶) = (ran (A𝐶) ∪ ran (B𝐶))
6 df-ima 4301 . . 3 (A𝐶) = ran (A𝐶)
7 df-ima 4301 . . 3 (B𝐶) = ran (B𝐶)
86, 7uneq12i 3089 . 2 ((A𝐶) ∪ (B𝐶)) = (ran (A𝐶) ∪ ran (B𝐶))
95, 8eqtr4i 2060 1 ((AB) “ 𝐶) = ((A𝐶) ∪ (B𝐶))
 Colors of variables: wff set class Syntax hints:   = wceq 1242   ∪ cun 2909  ran crn 4289   ↾ cres 4290   “ cima 4291 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019 This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-v 2553  df-un 2916  df-in 2918  df-ss 2925  df-sn 3373  df-pr 3374  df-op 3376  df-br 3756  df-opab 3810  df-cnv 4296  df-dm 4298  df-rn 4299  df-res 4300  df-ima 4301 This theorem is referenced by:  fvun1  5182
 Copyright terms: Public domain W3C validator