Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eximi | GIF version |
Description: Inference adding existential quantifier to antecedent and consequent. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eximi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
eximi | ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exim 1490 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) | |
2 | eximi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | mpg 1340 | 1 ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1381 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-4 1400 ax-ial 1427 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: 2eximi 1492 eximii 1493 exsimpl 1508 exsimpr 1509 19.29r2 1513 19.29x 1514 19.35-1 1515 19.43 1519 19.40 1522 19.40-2 1523 exanaliim 1538 19.12 1555 equs4 1613 cbvexh 1638 equvini 1641 sbimi 1647 equs5e 1676 exdistrfor 1681 equs45f 1683 sbcof2 1691 sbequi 1720 spsbe 1723 sbidm 1731 cbvexdh 1801 eumo0 1931 mor 1942 euan 1956 eupickb 1981 2eu2ex 1989 2exeu 1992 rexex 2368 reximi2 2415 cgsexg 2589 gencbvex 2600 gencbval 2602 vtocl3 2610 eqvinc 2667 eqvincg 2668 mosubt 2718 rexm 3320 prmg 3489 bm1.3ii 3878 a9evsep 3879 axnul 3882 dtruex 4283 dminss 4738 imainss 4739 euiotaex 4883 imadiflem 4978 funimaexglem 4982 brprcneu 5171 fv3 5197 relelfvdm 5205 ssimaex 5234 oprabid 5537 brabvv 5551 ecexr 6111 enssdom 6242 subhalfnqq 6512 prarloc 6601 ltexprlemopl 6699 ltexprlemlol 6700 ltexprlemopu 6701 ltexprlemupu 6702 bdbm1.3ii 10011 bj-inex 10027 bj-2inf 10062 |
Copyright terms: Public domain | W3C validator |