ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.12 Structured version   GIF version

Theorem 19.12 1539
Description: Theorem 19.12 of [Margaris] p. 89. Assuming the converse is a mistake sometimes made by beginners! (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
19.12 (xyφyxφ)

Proof of Theorem 19.12
StepHypRef Expression
1 hba1 1416 . . 3 (yφyyφ)
21hbex 1511 . 2 (xyφyxyφ)
3 ax-4 1382 . . 3 (yφφ)
43eximi 1475 . 2 (xyφxφ)
52, 4alrimih 1338 1 (xyφyxφ)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1226  wex 1363
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1316  ax-7 1317  ax-gen 1318  ax-ie1 1364  ax-ie2 1365  ax-4 1382  ax-ial 1410
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  hbexd  1567  nfexd  1627  cbvexdh  1784
  Copyright terms: Public domain W3C validator