| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 19.12 | GIF version | ||
| Description: Theorem 19.12 of [Margaris] p. 89. Assuming the converse is a mistake sometimes made by beginners! (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 19.12 | ⊢ (∃𝑥∀𝑦𝜑 → ∀𝑦∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hba1 1433 | . . 3 ⊢ (∀𝑦𝜑 → ∀𝑦∀𝑦𝜑) | |
| 2 | 1 | hbex 1527 | . 2 ⊢ (∃𝑥∀𝑦𝜑 → ∀𝑦∃𝑥∀𝑦𝜑) |
| 3 | ax-4 1400 | . . 3 ⊢ (∀𝑦𝜑 → 𝜑) | |
| 4 | 3 | eximi 1491 | . 2 ⊢ (∃𝑥∀𝑦𝜑 → ∃𝑥𝜑) |
| 5 | 2, 4 | alrimih 1358 | 1 ⊢ (∃𝑥∀𝑦𝜑 → ∀𝑦∃𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1241 ∃wex 1381 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-4 1400 ax-ial 1427 |
| This theorem depends on definitions: df-bi 110 |
| This theorem is referenced by: hbexd 1584 nfexd 1644 cbvexdh 1801 |
| Copyright terms: Public domain | W3C validator |