![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exanaliim | GIF version |
Description: A transformation of quantifiers and logical connectives. In classical logic the converse also holds. (Contributed by Jim Kingdon, 15-Jul-2018.) |
Ref | Expression |
---|---|
exanaliim | ⊢ (∃𝑥(𝜑 ∧ ¬ 𝜓) → ¬ ∀𝑥(𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | annimim 782 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → ¬ (𝜑 → 𝜓)) | |
2 | 1 | eximi 1491 | . 2 ⊢ (∃𝑥(𝜑 ∧ ¬ 𝜓) → ∃𝑥 ¬ (𝜑 → 𝜓)) |
3 | exnalim 1537 | . 2 ⊢ (∃𝑥 ¬ (𝜑 → 𝜓) → ¬ ∀𝑥(𝜑 → 𝜓)) | |
4 | 2, 3 | syl 14 | 1 ⊢ (∃𝑥(𝜑 ∧ ¬ 𝜓) → ¬ ∀𝑥(𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 97 ∀wal 1241 ∃wex 1381 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-5 1336 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-4 1400 ax-17 1419 ax-ial 1427 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-fal 1249 df-nf 1350 |
This theorem is referenced by: rexnalim 2317 nssr 3003 nssssr 3958 brprcneu 5171 |
Copyright terms: Public domain | W3C validator |