ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.40 Structured version   GIF version

Theorem 19.40 1504
Description: Theorem 19.40 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
19.40 (x(φ ψ) → (xφ xψ))

Proof of Theorem 19.40
StepHypRef Expression
1 exsimpl 1490 . 2 (x(φ ψ) → xφ)
2 simpr 103 . . 3 ((φ ψ) → ψ)
32eximi 1473 . 2 (x(φ ψ) → xψ)
41, 3jca 290 1 (x(φ ψ) → (xφ xψ))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97  wex 1362
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1316  ax-gen 1318  ax-ie1 1363  ax-ie2 1364  ax-4 1381  ax-ial 1409
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  19.40-2  1505  19.41h  1557  19.41  1558  exdistrfor  1663  uniin  3574  copsexg  3955  dmin  4470  imadif  4905  imainlem  4906
  Copyright terms: Public domain W3C validator