ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exsimpr Structured version   GIF version

Theorem exsimpr 1491
Description: Simplification of an existentially quantified conjunction. (Contributed by Rodolfo Medina, 25-Sep-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
exsimpr (x(φ ψ) → xψ)

Proof of Theorem exsimpr
StepHypRef Expression
1 simpr 103 . 2 ((φ ψ) → ψ)
21eximi 1473 1 (x(φ ψ) → xψ)
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97  wex 1362
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1316  ax-gen 1318  ax-ie1 1363  ax-ie2 1364  ax-4 1381  ax-ial 1409
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  onm  4087  imassrn  4606  fv3  5122  relelfvdm  5130  nfvres  5131  brtpos2  5788
  Copyright terms: Public domain W3C validator