Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 19.40-2 | GIF version |
Description: Theorem *11.42 in [WhiteheadRussell] p. 163. Theorem 19.40 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011.) |
Ref | Expression |
---|---|
19.40-2 | ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) → (∃𝑥∃𝑦𝜑 ∧ ∃𝑥∃𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.40 1522 | . . 3 ⊢ (∃𝑦(𝜑 ∧ 𝜓) → (∃𝑦𝜑 ∧ ∃𝑦𝜓)) | |
2 | 1 | eximi 1491 | . 2 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) → ∃𝑥(∃𝑦𝜑 ∧ ∃𝑦𝜓)) |
3 | 19.40 1522 | . 2 ⊢ (∃𝑥(∃𝑦𝜑 ∧ ∃𝑦𝜓) → (∃𝑥∃𝑦𝜑 ∧ ∃𝑥∃𝑦𝜓)) | |
4 | 2, 3 | syl 14 | 1 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) → (∃𝑥∃𝑦𝜑 ∧ ∃𝑥∃𝑦𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ∃wex 1381 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-4 1400 ax-ial 1427 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |