ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.29x Structured version   GIF version

Theorem 19.29x 1496
Description: Variation of Theorem 19.29 of [Margaris] p. 90 with mixed quantification. (Contributed by NM, 11-Feb-2005.)
Assertion
Ref Expression
19.29x ((xyφ xyψ) → xy(φ ψ))

Proof of Theorem 19.29x
StepHypRef Expression
1 19.29r 1494 . 2 ((xyφ xyψ) → x(yφ yψ))
2 19.29 1493 . . 3 ((yφ yψ) → y(φ ψ))
32eximi 1473 . 2 (x(yφ yψ) → xy(φ ψ))
41, 3syl 14 1 ((xyφ xyψ) → xy(φ ψ))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97  wal 1226  wex 1362
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1316  ax-gen 1318  ax-ie1 1363  ax-ie2 1364  ax-4 1381  ax-ial 1409
This theorem depends on definitions:  df-bi 110
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator