![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2eximi | GIF version |
Description: Inference adding 2 existential quantifiers to antecedent and consequent. (Contributed by NM, 3-Feb-2005.) |
Ref | Expression |
---|---|
eximi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
2eximi | ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑥∃𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eximi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | eximi 1491 | . 2 ⊢ (∃𝑦𝜑 → ∃𝑦𝜓) |
3 | 2 | eximi 1491 | 1 ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑥∃𝑦𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1381 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-4 1400 ax-ial 1427 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: excomim 1553 cgsex2g 2590 cgsex4g 2591 vtocl2 2609 vtocl3 2610 dtruarb 3942 opelopabsb 3997 mosubopt 4405 xpmlem 4744 brabvv 5551 ssoprab2i 5593 dmaddpqlem 6475 nqpi 6476 dmaddpq 6477 dmmulpq 6478 enq0sym 6530 enq0ref 6531 enq0tr 6532 nq0nn 6540 prarloc 6601 bj-inex 10027 |
Copyright terms: Public domain | W3C validator |