ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  excomim GIF version

Theorem excomim 1550
Description: One direction of Theorem 19.11 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
excomim (xyφyxφ)

Proof of Theorem excomim
StepHypRef Expression
1 19.8a 1479 . . 3 (φxφ)
212eximi 1489 . 2 (xyφxyxφ)
3 hbe1 1381 . . . 4 (xφxxφ)
43hbex 1524 . . 3 (yxφxyxφ)
5419.9h 1531 . 2 (xyxφyxφ)
62, 5sylib 127 1 (xyφyxφ)
Colors of variables: wff set class
Syntax hints:  wi 4  wex 1378
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-4 1397  ax-ial 1424
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  excom  1551  2euswapdc  1988
  Copyright terms: Public domain W3C validator