ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brabvv Structured version   GIF version

Theorem brabvv 5470
Description: If two classes are in a relationship given by an ordered-pair class abstraction, the classes are sets. (Contributed by Jim Kingdon, 16-Jan-2019.)
Assertion
Ref Expression
brabvv (𝑋{⟨x, y⟩ ∣ φ}𝑌 → (𝑋 V 𝑌 V))
Distinct variable groups:   x,y,𝑋   x,𝑌,y
Allowed substitution hints:   φ(x,y)

Proof of Theorem brabvv
StepHypRef Expression
1 df-br 3735 . . . . . 6 (𝑋{⟨x, y⟩ ∣ φ}𝑌 ↔ ⟨𝑋, 𝑌 {⟨x, y⟩ ∣ φ})
2 elopab 3965 . . . . . 6 (⟨𝑋, 𝑌 {⟨x, y⟩ ∣ φ} ↔ xy(⟨𝑋, 𝑌⟩ = ⟨x, y φ))
31, 2bitri 173 . . . . 5 (𝑋{⟨x, y⟩ ∣ φ}𝑌xy(⟨𝑋, 𝑌⟩ = ⟨x, y φ))
4 exsimpl 1486 . . . . . 6 (y(⟨𝑋, 𝑌⟩ = ⟨x, y φ) → y𝑋, 𝑌⟩ = ⟨x, y⟩)
54eximi 1469 . . . . 5 (xy(⟨𝑋, 𝑌⟩ = ⟨x, y φ) → xy𝑋, 𝑌⟩ = ⟨x, y⟩)
63, 5sylbi 114 . . . 4 (𝑋{⟨x, y⟩ ∣ φ}𝑌xy𝑋, 𝑌⟩ = ⟨x, y⟩)
7 vex 2534 . . . . . . . 8 x V
8 vex 2534 . . . . . . . 8 y V
97, 8opth 3944 . . . . . . 7 (⟨x, y⟩ = ⟨𝑋, 𝑌⟩ ↔ (x = 𝑋 y = 𝑌))
109biimpi 113 . . . . . 6 (⟨x, y⟩ = ⟨𝑋, 𝑌⟩ → (x = 𝑋 y = 𝑌))
1110eqcoms 2021 . . . . 5 (⟨𝑋, 𝑌⟩ = ⟨x, y⟩ → (x = 𝑋 y = 𝑌))
12112eximi 1470 . . . 4 (xy𝑋, 𝑌⟩ = ⟨x, y⟩ → xy(x = 𝑋 y = 𝑌))
136, 12syl 14 . . 3 (𝑋{⟨x, y⟩ ∣ φ}𝑌xy(x = 𝑋 y = 𝑌))
14 eeanv 1785 . . 3 (xy(x = 𝑋 y = 𝑌) ↔ (x x = 𝑋 y y = 𝑌))
1513, 14sylib 127 . 2 (𝑋{⟨x, y⟩ ∣ φ}𝑌 → (x x = 𝑋 y y = 𝑌))
16 isset 2535 . . 3 (𝑋 V ↔ x x = 𝑋)
17 isset 2535 . . 3 (𝑌 V ↔ y y = 𝑌)
1816, 17anbi12i 436 . 2 ((𝑋 V 𝑌 V) ↔ (x x = 𝑋 y y = 𝑌))
1915, 18sylibr 137 1 (𝑋{⟨x, y⟩ ∣ φ}𝑌 → (𝑋 V 𝑌 V))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97   = wceq 1226  wex 1358   wcel 1370  Vcvv 2531  cop 3349   class class class wbr 3734  {copab 3787
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 617  ax-5 1312  ax-7 1313  ax-gen 1314  ax-ie1 1359  ax-ie2 1360  ax-8 1372  ax-10 1373  ax-11 1374  ax-i12 1375  ax-bnd 1376  ax-4 1377  ax-14 1382  ax-17 1396  ax-i9 1400  ax-ial 1405  ax-i5r 1406  ax-ext 2000  ax-sep 3845  ax-pow 3897  ax-pr 3914
This theorem depends on definitions:  df-bi 110  df-3an 873  df-tru 1229  df-nf 1326  df-sb 1624  df-clab 2005  df-cleq 2011  df-clel 2014  df-nfc 2145  df-v 2533  df-un 2895  df-in 2897  df-ss 2904  df-pw 3332  df-sn 3352  df-pr 3353  df-op 3355  df-br 3735  df-opab 3789
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator