Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  equs5e GIF version

Theorem equs5e 1676
 Description: A property related to substitution that unlike equs5 1710 doesn't require a distinctor antecedent. (Contributed by NM, 2-Feb-2007.) (Revised by NM, 3-Feb-2015.)
Assertion
Ref Expression
equs5e (∃𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑))

Proof of Theorem equs5e
StepHypRef Expression
1 19.8a 1482 . . . . 5 (𝜑 → ∃𝑦𝜑)
2 hbe1 1384 . . . . 5 (∃𝑦𝜑 → ∀𝑦𝑦𝜑)
31, 2syl 14 . . . 4 (𝜑 → ∀𝑦𝑦𝜑)
43anim2i 324 . . 3 ((𝑥 = 𝑦𝜑) → (𝑥 = 𝑦 ∧ ∀𝑦𝑦𝜑))
54eximi 1491 . 2 (∃𝑥(𝑥 = 𝑦𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ ∀𝑦𝑦𝜑))
6 equs5a 1675 . 2 (∃𝑥(𝑥 = 𝑦 ∧ ∀𝑦𝑦𝜑) → ∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑))
75, 6syl 14 1 (∃𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97  ∀wal 1241   = wceq 1243  ∃wex 1381 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-11 1397  ax-4 1400  ax-ial 1427 This theorem depends on definitions:  df-bi 110 This theorem is referenced by:  ax11e  1677  sb4e  1686
 Copyright terms: Public domain W3C validator