Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > spsbe | GIF version |
Description: A specialization theorem, mostly the same as Theorem 19.8 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 29-Dec-2017.) |
Ref | Expression |
---|---|
spsbe | ⊢ ([𝑦 / 𝑥]𝜑 → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb1 1649 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
2 | simpr 103 | . . 3 ⊢ ((𝑥 = 𝑦 ∧ 𝜑) → 𝜑) | |
3 | 2 | eximi 1491 | . 2 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∃𝑥𝜑) |
4 | 1, 3 | syl 14 | 1 ⊢ ([𝑦 / 𝑥]𝜑 → ∃𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ∃wex 1381 [wsb 1645 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-4 1400 ax-ial 1427 |
This theorem depends on definitions: df-bi 110 df-sb 1646 |
This theorem is referenced by: sbft 1728 |
Copyright terms: Public domain | W3C validator |