ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssimaex GIF version

Theorem ssimaex 5234
Description: The existence of a subimage. (Contributed by NM, 8-Apr-2007.)
Hypothesis
Ref Expression
ssimaex.1 𝐴 ∈ V
Assertion
Ref Expression
ssimaex ((Fun 𝐹𝐵 ⊆ (𝐹𝐴)) → ∃𝑥(𝑥𝐴𝐵 = (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem ssimaex
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmres 4632 . . . . 5 dom (𝐹𝐴) = (𝐴 ∩ dom 𝐹)
21imaeq2i 4666 . . . 4 (𝐹 “ dom (𝐹𝐴)) = (𝐹 “ (𝐴 ∩ dom 𝐹))
3 imadmres 4813 . . . 4 (𝐹 “ dom (𝐹𝐴)) = (𝐹𝐴)
42, 3eqtr3i 2062 . . 3 (𝐹 “ (𝐴 ∩ dom 𝐹)) = (𝐹𝐴)
54sseq2i 2970 . 2 (𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹)) ↔ 𝐵 ⊆ (𝐹𝐴))
6 ssrab2 3025 . . . 4 {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} ⊆ (𝐴 ∩ dom 𝐹)
7 ssel2 2940 . . . . . . . . 9 ((𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹)) ∧ 𝑧𝐵) → 𝑧 ∈ (𝐹 “ (𝐴 ∩ dom 𝐹)))
87adantll 445 . . . . . . . 8 (((Fun 𝐹𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹))) ∧ 𝑧𝐵) → 𝑧 ∈ (𝐹 “ (𝐴 ∩ dom 𝐹)))
9 fvelima 5225 . . . . . . . . . . . 12 ((Fun 𝐹𝑧 ∈ (𝐹 “ (𝐴 ∩ dom 𝐹))) → ∃𝑤 ∈ (𝐴 ∩ dom 𝐹)(𝐹𝑤) = 𝑧)
109ex 108 . . . . . . . . . . 11 (Fun 𝐹 → (𝑧 ∈ (𝐹 “ (𝐴 ∩ dom 𝐹)) → ∃𝑤 ∈ (𝐴 ∩ dom 𝐹)(𝐹𝑤) = 𝑧))
1110adantr 261 . . . . . . . . . 10 ((Fun 𝐹𝑧𝐵) → (𝑧 ∈ (𝐹 “ (𝐴 ∩ dom 𝐹)) → ∃𝑤 ∈ (𝐴 ∩ dom 𝐹)(𝐹𝑤) = 𝑧))
12 eleq1a 2109 . . . . . . . . . . . . . . . 16 (𝑧𝐵 → ((𝐹𝑤) = 𝑧 → (𝐹𝑤) ∈ 𝐵))
1312anim2d 320 . . . . . . . . . . . . . . 15 (𝑧𝐵 → ((𝑤 ∈ (𝐴 ∩ dom 𝐹) ∧ (𝐹𝑤) = 𝑧) → (𝑤 ∈ (𝐴 ∩ dom 𝐹) ∧ (𝐹𝑤) ∈ 𝐵)))
14 fveq2 5178 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑤 → (𝐹𝑦) = (𝐹𝑤))
1514eleq1d 2106 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑤 → ((𝐹𝑦) ∈ 𝐵 ↔ (𝐹𝑤) ∈ 𝐵))
1615elrab 2698 . . . . . . . . . . . . . . 15 (𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} ↔ (𝑤 ∈ (𝐴 ∩ dom 𝐹) ∧ (𝐹𝑤) ∈ 𝐵))
1713, 16syl6ibr 151 . . . . . . . . . . . . . 14 (𝑧𝐵 → ((𝑤 ∈ (𝐴 ∩ dom 𝐹) ∧ (𝐹𝑤) = 𝑧) → 𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵}))
18 simpr 103 . . . . . . . . . . . . . . 15 ((𝑤 ∈ (𝐴 ∩ dom 𝐹) ∧ (𝐹𝑤) = 𝑧) → (𝐹𝑤) = 𝑧)
1918a1i 9 . . . . . . . . . . . . . 14 (𝑧𝐵 → ((𝑤 ∈ (𝐴 ∩ dom 𝐹) ∧ (𝐹𝑤) = 𝑧) → (𝐹𝑤) = 𝑧))
2017, 19jcad 291 . . . . . . . . . . . . 13 (𝑧𝐵 → ((𝑤 ∈ (𝐴 ∩ dom 𝐹) ∧ (𝐹𝑤) = 𝑧) → (𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} ∧ (𝐹𝑤) = 𝑧)))
2120reximdv2 2418 . . . . . . . . . . . 12 (𝑧𝐵 → (∃𝑤 ∈ (𝐴 ∩ dom 𝐹)(𝐹𝑤) = 𝑧 → ∃𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} (𝐹𝑤) = 𝑧))
2221adantl 262 . . . . . . . . . . 11 ((Fun 𝐹𝑧𝐵) → (∃𝑤 ∈ (𝐴 ∩ dom 𝐹)(𝐹𝑤) = 𝑧 → ∃𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} (𝐹𝑤) = 𝑧))
23 funfn 4931 . . . . . . . . . . . . 13 (Fun 𝐹𝐹 Fn dom 𝐹)
24 inss2 3158 . . . . . . . . . . . . . . 15 (𝐴 ∩ dom 𝐹) ⊆ dom 𝐹
256, 24sstri 2954 . . . . . . . . . . . . . 14 {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} ⊆ dom 𝐹
26 fvelimab 5229 . . . . . . . . . . . . . 14 ((𝐹 Fn dom 𝐹 ∧ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} ⊆ dom 𝐹) → (𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵}) ↔ ∃𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} (𝐹𝑤) = 𝑧))
2725, 26mpan2 401 . . . . . . . . . . . . 13 (𝐹 Fn dom 𝐹 → (𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵}) ↔ ∃𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} (𝐹𝑤) = 𝑧))
2823, 27sylbi 114 . . . . . . . . . . . 12 (Fun 𝐹 → (𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵}) ↔ ∃𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} (𝐹𝑤) = 𝑧))
2928adantr 261 . . . . . . . . . . 11 ((Fun 𝐹𝑧𝐵) → (𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵}) ↔ ∃𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} (𝐹𝑤) = 𝑧))
3022, 29sylibrd 158 . . . . . . . . . 10 ((Fun 𝐹𝑧𝐵) → (∃𝑤 ∈ (𝐴 ∩ dom 𝐹)(𝐹𝑤) = 𝑧𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵})))
3111, 30syld 40 . . . . . . . . 9 ((Fun 𝐹𝑧𝐵) → (𝑧 ∈ (𝐹 “ (𝐴 ∩ dom 𝐹)) → 𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵})))
3231adantlr 446 . . . . . . . 8 (((Fun 𝐹𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹))) ∧ 𝑧𝐵) → (𝑧 ∈ (𝐹 “ (𝐴 ∩ dom 𝐹)) → 𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵})))
338, 32mpd 13 . . . . . . 7 (((Fun 𝐹𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹))) ∧ 𝑧𝐵) → 𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵}))
3433ex 108 . . . . . 6 ((Fun 𝐹𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹))) → (𝑧𝐵𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵})))
35 fvelima 5225 . . . . . . . . 9 ((Fun 𝐹𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵})) → ∃𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} (𝐹𝑤) = 𝑧)
3635ex 108 . . . . . . . 8 (Fun 𝐹 → (𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵}) → ∃𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} (𝐹𝑤) = 𝑧))
37 eleq1 2100 . . . . . . . . . . . 12 ((𝐹𝑤) = 𝑧 → ((𝐹𝑤) ∈ 𝐵𝑧𝐵))
3837biimpcd 148 . . . . . . . . . . 11 ((𝐹𝑤) ∈ 𝐵 → ((𝐹𝑤) = 𝑧𝑧𝐵))
3938adantl 262 . . . . . . . . . 10 ((𝑤 ∈ (𝐴 ∩ dom 𝐹) ∧ (𝐹𝑤) ∈ 𝐵) → ((𝐹𝑤) = 𝑧𝑧𝐵))
4016, 39sylbi 114 . . . . . . . . 9 (𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} → ((𝐹𝑤) = 𝑧𝑧𝐵))
4140rexlimiv 2427 . . . . . . . 8 (∃𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} (𝐹𝑤) = 𝑧𝑧𝐵)
4236, 41syl6 29 . . . . . . 7 (Fun 𝐹 → (𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵}) → 𝑧𝐵))
4342adantr 261 . . . . . 6 ((Fun 𝐹𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹))) → (𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵}) → 𝑧𝐵))
4434, 43impbid 120 . . . . 5 ((Fun 𝐹𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹))) → (𝑧𝐵𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵})))
4544eqrdv 2038 . . . 4 ((Fun 𝐹𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹))) → 𝐵 = (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵}))
46 ssimaex.1 . . . . . . 7 𝐴 ∈ V
4746inex1 3891 . . . . . 6 (𝐴 ∩ dom 𝐹) ∈ V
4847rabex 3901 . . . . 5 {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} ∈ V
49 sseq1 2966 . . . . . 6 (𝑥 = {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} → (𝑥 ⊆ (𝐴 ∩ dom 𝐹) ↔ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} ⊆ (𝐴 ∩ dom 𝐹)))
50 imaeq2 4664 . . . . . . 7 (𝑥 = {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} → (𝐹𝑥) = (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵}))
5150eqeq2d 2051 . . . . . 6 (𝑥 = {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} → (𝐵 = (𝐹𝑥) ↔ 𝐵 = (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵})))
5249, 51anbi12d 442 . . . . 5 (𝑥 = {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} → ((𝑥 ⊆ (𝐴 ∩ dom 𝐹) ∧ 𝐵 = (𝐹𝑥)) ↔ ({𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} ⊆ (𝐴 ∩ dom 𝐹) ∧ 𝐵 = (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵}))))
5348, 52spcev 2647 . . . 4 (({𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} ⊆ (𝐴 ∩ dom 𝐹) ∧ 𝐵 = (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵})) → ∃𝑥(𝑥 ⊆ (𝐴 ∩ dom 𝐹) ∧ 𝐵 = (𝐹𝑥)))
546, 45, 53sylancr 393 . . 3 ((Fun 𝐹𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹))) → ∃𝑥(𝑥 ⊆ (𝐴 ∩ dom 𝐹) ∧ 𝐵 = (𝐹𝑥)))
55 inss1 3157 . . . . . 6 (𝐴 ∩ dom 𝐹) ⊆ 𝐴
56 sstr 2953 . . . . . 6 ((𝑥 ⊆ (𝐴 ∩ dom 𝐹) ∧ (𝐴 ∩ dom 𝐹) ⊆ 𝐴) → 𝑥𝐴)
5755, 56mpan2 401 . . . . 5 (𝑥 ⊆ (𝐴 ∩ dom 𝐹) → 𝑥𝐴)
5857anim1i 323 . . . 4 ((𝑥 ⊆ (𝐴 ∩ dom 𝐹) ∧ 𝐵 = (𝐹𝑥)) → (𝑥𝐴𝐵 = (𝐹𝑥)))
5958eximi 1491 . . 3 (∃𝑥(𝑥 ⊆ (𝐴 ∩ dom 𝐹) ∧ 𝐵 = (𝐹𝑥)) → ∃𝑥(𝑥𝐴𝐵 = (𝐹𝑥)))
6054, 59syl 14 . 2 ((Fun 𝐹𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹))) → ∃𝑥(𝑥𝐴𝐵 = (𝐹𝑥)))
615, 60sylan2br 272 1 ((Fun 𝐹𝐵 ⊆ (𝐹𝐴)) → ∃𝑥(𝑥𝐴𝐵 = (𝐹𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98   = wceq 1243  wex 1381  wcel 1393  wrex 2307  {crab 2310  Vcvv 2557  cin 2916  wss 2917  dom cdm 4345  cres 4347  cima 4348  Fun wfun 4896   Fn wfn 4897  cfv 4902
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-sbc 2765  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-fv 4910
This theorem is referenced by:  ssimaexg  5235
  Copyright terms: Public domain W3C validator