ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.29r2 GIF version

Theorem 19.29r2 1513
Description: Variation of Theorem 19.29 of [Margaris] p. 90 with double quantification. (Contributed by NM, 3-Feb-2005.)
Assertion
Ref Expression
19.29r2 ((∃𝑥𝑦𝜑 ∧ ∀𝑥𝑦𝜓) → ∃𝑥𝑦(𝜑𝜓))

Proof of Theorem 19.29r2
StepHypRef Expression
1 19.29r 1512 . 2 ((∃𝑥𝑦𝜑 ∧ ∀𝑥𝑦𝜓) → ∃𝑥(∃𝑦𝜑 ∧ ∀𝑦𝜓))
2 19.29r 1512 . . 3 ((∃𝑦𝜑 ∧ ∀𝑦𝜓) → ∃𝑦(𝜑𝜓))
32eximi 1491 . 2 (∃𝑥(∃𝑦𝜑 ∧ ∀𝑦𝜓) → ∃𝑥𝑦(𝜑𝜓))
41, 3syl 14 1 ((∃𝑥𝑦𝜑 ∧ ∀𝑥𝑦𝜓) → ∃𝑥𝑦(𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wal 1241  wex 1381
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-4 1400  ax-ial 1427
This theorem depends on definitions:  df-bi 110
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator