ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dminss Unicode version

Theorem dminss 4681
Description: An upper bound for intersection with a domain. Theorem 40 of [Suppes] p. 66, who calls it "somewhat surprising." (Contributed by NM, 11-Aug-2004.)
Assertion
Ref Expression
dminss  dom 
R  i^i  C_  `' R " R "

Proof of Theorem dminss
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.8a 1479 . . . . . . 7  R  R
21ancoms 255 . . . . . 6  R  R
3 vex 2554 . . . . . . 7 
_V
43elima2 4617 . . . . . 6  R "  R
52, 4sylibr 137 . . . . 5  R  R
"
6 simpl 102 . . . . . 6  R  R
7 vex 2554 . . . . . . 7 
_V
83, 7brcnv 4461 . . . . . 6  `' R  R
96, 8sylibr 137 . . . . 5  R  `' R
105, 9jca 290 . . . 4  R  R "  `' R
1110eximi 1488 . . 3  R  R
"  `' R
127eldm 4475 . . . . 5  dom  R  R
1312anbi1i 431 . . . 4  dom  R  R
14 elin 3120 . . . 4  dom  R  i^i  dom  R
15 19.41v 1779 . . . 4  R  R
1613, 14, 153bitr4i 201 . . 3  dom  R  i^i  R
177elima2 4617 . . 3  `' R " R "  R "  `' R
1811, 16, 173imtr4i 190 . 2  dom  R  i^i  `' R " R "
1918ssriv 2943 1  dom 
R  i^i  C_  `' R " R "
Colors of variables: wff set class
Syntax hints:   wa 97  wex 1378   wcel 1390    i^i cin 2910    C_ wss 2911   class class class wbr 3755   `'ccnv 4287   dom cdm 4288   "cima 4291
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866  ax-pow 3918  ax-pr 3935
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-rex 2306  df-v 2553  df-un 2916  df-in 2918  df-ss 2925  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-br 3756  df-opab 3810  df-xp 4294  df-cnv 4296  df-dm 4298  df-rn 4299  df-res 4300  df-ima 4301
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator