Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltresr GIF version

Theorem ltresr 6915
 Description: Ordering of real subset of complex numbers in terms of signed reals. (Contributed by NM, 22-Feb-1996.)
Assertion
Ref Expression
ltresr (⟨𝐴, 0R⟩ <𝐵, 0R⟩ ↔ 𝐴 <R 𝐵)

Proof of Theorem ltresr
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelre 6909 . . . 4 < ⊆ (ℝ × ℝ)
21brel 4392 . . 3 (⟨𝐴, 0R⟩ <𝐵, 0R⟩ → (⟨𝐴, 0R⟩ ∈ ℝ ∧ ⟨𝐵, 0R⟩ ∈ ℝ))
3 opelreal 6904 . . . 4 (⟨𝐴, 0R⟩ ∈ ℝ ↔ 𝐴R)
4 opelreal 6904 . . . 4 (⟨𝐵, 0R⟩ ∈ ℝ ↔ 𝐵R)
53, 4anbi12i 433 . . 3 ((⟨𝐴, 0R⟩ ∈ ℝ ∧ ⟨𝐵, 0R⟩ ∈ ℝ) ↔ (𝐴R𝐵R))
62, 5sylib 127 . 2 (⟨𝐴, 0R⟩ <𝐵, 0R⟩ → (𝐴R𝐵R))
7 ltrelsr 6823 . . 3 <R ⊆ (R × R)
87brel 4392 . 2 (𝐴 <R 𝐵 → (𝐴R𝐵R))
9 eleq1 2100 . . . . . . . . 9 (𝑥 = ⟨𝐴, 0R⟩ → (𝑥 ∈ ℝ ↔ ⟨𝐴, 0R⟩ ∈ ℝ))
109anbi1d 438 . . . . . . . 8 (𝑥 = ⟨𝐴, 0R⟩ → ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ↔ (⟨𝐴, 0R⟩ ∈ ℝ ∧ 𝑦 ∈ ℝ)))
11 eqeq1 2046 . . . . . . . . . . 11 (𝑥 = ⟨𝐴, 0R⟩ → (𝑥 = ⟨𝑧, 0R⟩ ↔ ⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩))
1211anbi1d 438 . . . . . . . . . 10 (𝑥 = ⟨𝐴, 0R⟩ → ((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ↔ (⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩)))
1312anbi1d 438 . . . . . . . . 9 (𝑥 = ⟨𝐴, 0R⟩ → (((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤) ↔ ((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤)))
14132exbidv 1748 . . . . . . . 8 (𝑥 = ⟨𝐴, 0R⟩ → (∃𝑧𝑤((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤) ↔ ∃𝑧𝑤((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤)))
1510, 14anbi12d 442 . . . . . . 7 (𝑥 = ⟨𝐴, 0R⟩ → (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∃𝑧𝑤((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤)) ↔ ((⟨𝐴, 0R⟩ ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∃𝑧𝑤((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤))))
16 eleq1 2100 . . . . . . . . 9 (𝑦 = ⟨𝐵, 0R⟩ → (𝑦 ∈ ℝ ↔ ⟨𝐵, 0R⟩ ∈ ℝ))
1716anbi2d 437 . . . . . . . 8 (𝑦 = ⟨𝐵, 0R⟩ → ((⟨𝐴, 0R⟩ ∈ ℝ ∧ 𝑦 ∈ ℝ) ↔ (⟨𝐴, 0R⟩ ∈ ℝ ∧ ⟨𝐵, 0R⟩ ∈ ℝ)))
18 eqeq1 2046 . . . . . . . . . . 11 (𝑦 = ⟨𝐵, 0R⟩ → (𝑦 = ⟨𝑤, 0R⟩ ↔ ⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩))
1918anbi2d 437 . . . . . . . . . 10 (𝑦 = ⟨𝐵, 0R⟩ → ((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ↔ (⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ ⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩)))
2019anbi1d 438 . . . . . . . . 9 (𝑦 = ⟨𝐵, 0R⟩ → (((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤) ↔ ((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ ⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤)))
21202exbidv 1748 . . . . . . . 8 (𝑦 = ⟨𝐵, 0R⟩ → (∃𝑧𝑤((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤) ↔ ∃𝑧𝑤((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ ⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤)))
2217, 21anbi12d 442 . . . . . . 7 (𝑦 = ⟨𝐵, 0R⟩ → (((⟨𝐴, 0R⟩ ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∃𝑧𝑤((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤)) ↔ ((⟨𝐴, 0R⟩ ∈ ℝ ∧ ⟨𝐵, 0R⟩ ∈ ℝ) ∧ ∃𝑧𝑤((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ ⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤))))
23 df-lt 6902 . . . . . . 7 < = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∃𝑧𝑤((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤))}
2415, 22, 23brabg 4006 . . . . . 6 ((⟨𝐴, 0R⟩ ∈ ℝ ∧ ⟨𝐵, 0R⟩ ∈ ℝ) → (⟨𝐴, 0R⟩ <𝐵, 0R⟩ ↔ ((⟨𝐴, 0R⟩ ∈ ℝ ∧ ⟨𝐵, 0R⟩ ∈ ℝ) ∧ ∃𝑧𝑤((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ ⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤))))
2524bianabs 543 . . . . 5 ((⟨𝐴, 0R⟩ ∈ ℝ ∧ ⟨𝐵, 0R⟩ ∈ ℝ) → (⟨𝐴, 0R⟩ <𝐵, 0R⟩ ↔ ∃𝑧𝑤((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ ⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤)))
26 vex 2560 . . . . . . . . . . 11 𝑧 ∈ V
2726eqresr 6912 . . . . . . . . . 10 (⟨𝑧, 0R⟩ = ⟨𝐴, 0R⟩ ↔ 𝑧 = 𝐴)
28 eqcom 2042 . . . . . . . . . 10 (⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ↔ ⟨𝑧, 0R⟩ = ⟨𝐴, 0R⟩)
29 eqcom 2042 . . . . . . . . . 10 (𝐴 = 𝑧𝑧 = 𝐴)
3027, 28, 293bitr4i 201 . . . . . . . . 9 (⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ↔ 𝐴 = 𝑧)
31 vex 2560 . . . . . . . . . . 11 𝑤 ∈ V
3231eqresr 6912 . . . . . . . . . 10 (⟨𝑤, 0R⟩ = ⟨𝐵, 0R⟩ ↔ 𝑤 = 𝐵)
33 eqcom 2042 . . . . . . . . . 10 (⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩ ↔ ⟨𝑤, 0R⟩ = ⟨𝐵, 0R⟩)
34 eqcom 2042 . . . . . . . . . 10 (𝐵 = 𝑤𝑤 = 𝐵)
3532, 33, 343bitr4i 201 . . . . . . . . 9 (⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩ ↔ 𝐵 = 𝑤)
3630, 35anbi12i 433 . . . . . . . 8 ((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ ⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩) ↔ (𝐴 = 𝑧𝐵 = 𝑤))
3726, 31opth2 3977 . . . . . . . 8 (⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ↔ (𝐴 = 𝑧𝐵 = 𝑤))
3836, 37bitr4i 176 . . . . . . 7 ((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ ⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩) ↔ ⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩)
3938anbi1i 431 . . . . . 6 (((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ ⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤) ↔ (⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ 𝑧 <R 𝑤))
40392exbii 1497 . . . . 5 (∃𝑧𝑤((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ ⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤) ↔ ∃𝑧𝑤(⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ 𝑧 <R 𝑤))
4125, 40syl6bb 185 . . . 4 ((⟨𝐴, 0R⟩ ∈ ℝ ∧ ⟨𝐵, 0R⟩ ∈ ℝ) → (⟨𝐴, 0R⟩ <𝐵, 0R⟩ ↔ ∃𝑧𝑤(⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ 𝑧 <R 𝑤)))
423, 4, 41syl2anbr 276 . . 3 ((𝐴R𝐵R) → (⟨𝐴, 0R⟩ <𝐵, 0R⟩ ↔ ∃𝑧𝑤(⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ 𝑧 <R 𝑤)))
43 breq12 3769 . . . 4 ((𝑧 = 𝐴𝑤 = 𝐵) → (𝑧 <R 𝑤𝐴 <R 𝐵))
4443copsex2g 3983 . . 3 ((𝐴R𝐵R) → (∃𝑧𝑤(⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ 𝑧 <R 𝑤) ↔ 𝐴 <R 𝐵))
4542, 44bitrd 177 . 2 ((𝐴R𝐵R) → (⟨𝐴, 0R⟩ <𝐵, 0R⟩ ↔ 𝐴 <R 𝐵))
466, 8, 45pm5.21nii 620 1 (⟨𝐴, 0R⟩ <𝐵, 0R⟩ ↔ 𝐴 <R 𝐵)
 Colors of variables: wff set class Syntax hints:   ∧ wa 97   ↔ wb 98   = wceq 1243  ∃wex 1381   ∈ wcel 1393  ⟨cop 3378   class class class wbr 3764  Rcnr 6395  0Rc0r 6396
 Copyright terms: Public domain W3C validator