ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvopab1 GIF version

Theorem cbvopab1 3830
Description: Change first bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 6-Oct-2004.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
cbvopab1.1 𝑧𝜑
cbvopab1.2 𝑥𝜓
cbvopab1.3 (𝑥 = 𝑧 → (𝜑𝜓))
Assertion
Ref Expression
cbvopab1 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑦⟩ ∣ 𝜓}
Distinct variable groups:   𝑥,𝑦   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)

Proof of Theorem cbvopab1
Dummy variables 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1421 . . . . 5 𝑣𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
2 nfv 1421 . . . . . . 7 𝑥 𝑤 = ⟨𝑣, 𝑦
3 nfs1v 1815 . . . . . . 7 𝑥[𝑣 / 𝑥]𝜑
42, 3nfan 1457 . . . . . 6 𝑥(𝑤 = ⟨𝑣, 𝑦⟩ ∧ [𝑣 / 𝑥]𝜑)
54nfex 1528 . . . . 5 𝑥𝑦(𝑤 = ⟨𝑣, 𝑦⟩ ∧ [𝑣 / 𝑥]𝜑)
6 opeq1 3549 . . . . . . . 8 (𝑥 = 𝑣 → ⟨𝑥, 𝑦⟩ = ⟨𝑣, 𝑦⟩)
76eqeq2d 2051 . . . . . . 7 (𝑥 = 𝑣 → (𝑤 = ⟨𝑥, 𝑦⟩ ↔ 𝑤 = ⟨𝑣, 𝑦⟩))
8 sbequ12 1654 . . . . . . 7 (𝑥 = 𝑣 → (𝜑 ↔ [𝑣 / 𝑥]𝜑))
97, 8anbi12d 442 . . . . . 6 (𝑥 = 𝑣 → ((𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (𝑤 = ⟨𝑣, 𝑦⟩ ∧ [𝑣 / 𝑥]𝜑)))
109exbidv 1706 . . . . 5 (𝑥 = 𝑣 → (∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑦(𝑤 = ⟨𝑣, 𝑦⟩ ∧ [𝑣 / 𝑥]𝜑)))
111, 5, 10cbvex 1639 . . . 4 (∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑣𝑦(𝑤 = ⟨𝑣, 𝑦⟩ ∧ [𝑣 / 𝑥]𝜑))
12 nfv 1421 . . . . . . 7 𝑧 𝑤 = ⟨𝑣, 𝑦
13 cbvopab1.1 . . . . . . . 8 𝑧𝜑
1413nfsb 1822 . . . . . . 7 𝑧[𝑣 / 𝑥]𝜑
1512, 14nfan 1457 . . . . . 6 𝑧(𝑤 = ⟨𝑣, 𝑦⟩ ∧ [𝑣 / 𝑥]𝜑)
1615nfex 1528 . . . . 5 𝑧𝑦(𝑤 = ⟨𝑣, 𝑦⟩ ∧ [𝑣 / 𝑥]𝜑)
17 nfv 1421 . . . . 5 𝑣𝑦(𝑤 = ⟨𝑧, 𝑦⟩ ∧ 𝜓)
18 opeq1 3549 . . . . . . . 8 (𝑣 = 𝑧 → ⟨𝑣, 𝑦⟩ = ⟨𝑧, 𝑦⟩)
1918eqeq2d 2051 . . . . . . 7 (𝑣 = 𝑧 → (𝑤 = ⟨𝑣, 𝑦⟩ ↔ 𝑤 = ⟨𝑧, 𝑦⟩))
20 sbequ 1721 . . . . . . . 8 (𝑣 = 𝑧 → ([𝑣 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑))
21 cbvopab1.2 . . . . . . . . 9 𝑥𝜓
22 cbvopab1.3 . . . . . . . . 9 (𝑥 = 𝑧 → (𝜑𝜓))
2321, 22sbie 1674 . . . . . . . 8 ([𝑧 / 𝑥]𝜑𝜓)
2420, 23syl6bb 185 . . . . . . 7 (𝑣 = 𝑧 → ([𝑣 / 𝑥]𝜑𝜓))
2519, 24anbi12d 442 . . . . . 6 (𝑣 = 𝑧 → ((𝑤 = ⟨𝑣, 𝑦⟩ ∧ [𝑣 / 𝑥]𝜑) ↔ (𝑤 = ⟨𝑧, 𝑦⟩ ∧ 𝜓)))
2625exbidv 1706 . . . . 5 (𝑣 = 𝑧 → (∃𝑦(𝑤 = ⟨𝑣, 𝑦⟩ ∧ [𝑣 / 𝑥]𝜑) ↔ ∃𝑦(𝑤 = ⟨𝑧, 𝑦⟩ ∧ 𝜓)))
2716, 17, 26cbvex 1639 . . . 4 (∃𝑣𝑦(𝑤 = ⟨𝑣, 𝑦⟩ ∧ [𝑣 / 𝑥]𝜑) ↔ ∃𝑧𝑦(𝑤 = ⟨𝑧, 𝑦⟩ ∧ 𝜓))
2811, 27bitri 173 . . 3 (∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑧𝑦(𝑤 = ⟨𝑧, 𝑦⟩ ∧ 𝜓))
2928abbii 2153 . 2 {𝑤 ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} = {𝑤 ∣ ∃𝑧𝑦(𝑤 = ⟨𝑧, 𝑦⟩ ∧ 𝜓)}
30 df-opab 3819 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
31 df-opab 3819 . 2 {⟨𝑧, 𝑦⟩ ∣ 𝜓} = {𝑤 ∣ ∃𝑧𝑦(𝑤 = ⟨𝑧, 𝑦⟩ ∧ 𝜓)}
3229, 30, 313eqtr4i 2070 1 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑦⟩ ∣ 𝜓}
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98   = wceq 1243  wnf 1349  wex 1381  [wsb 1645  {cab 2026  cop 3378  {copab 3817
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-un 2922  df-sn 3381  df-pr 3382  df-op 3384  df-opab 3819
This theorem is referenced by:  cbvopab1v  3833  cbvmpt  3851
  Copyright terms: Public domain W3C validator