ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opabss Structured version   GIF version

Theorem opabss 3791
Description: The collection of ordered pairs in a class is a subclass of it. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
opabss {⟨x, y⟩ ∣ x𝑅y} ⊆ 𝑅
Distinct variable groups:   x,𝑅   y,𝑅

Proof of Theorem opabss
Dummy variable z is distinct from all other variables.
StepHypRef Expression
1 df-opab 3789 . 2 {⟨x, y⟩ ∣ x𝑅y} = {zxy(z = ⟨x, y x𝑅y)}
2 df-br 3735 . . . . 5 (x𝑅y ↔ ⟨x, y 𝑅)
3 eleq1 2078 . . . . . 6 (z = ⟨x, y⟩ → (z 𝑅 ↔ ⟨x, y 𝑅))
43biimpar 281 . . . . 5 ((z = ⟨x, yx, y 𝑅) → z 𝑅)
52, 4sylan2b 271 . . . 4 ((z = ⟨x, y x𝑅y) → z 𝑅)
65exlimivv 1754 . . 3 (xy(z = ⟨x, y x𝑅y) → z 𝑅)
76abssi 2988 . 2 {zxy(z = ⟨x, y x𝑅y)} ⊆ 𝑅
81, 7eqsstri 2948 1 {⟨x, y⟩ ∣ x𝑅y} ⊆ 𝑅
Colors of variables: wff set class
Syntax hints:   wa 97   = wceq 1226  wex 1358   wcel 1370  {cab 2004  wss 2890  cop 3349   class class class wbr 3734  {copab 3787
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 617  ax-5 1312  ax-7 1313  ax-gen 1314  ax-ie1 1359  ax-ie2 1360  ax-8 1372  ax-10 1373  ax-11 1374  ax-i12 1375  ax-bnd 1376  ax-4 1377  ax-17 1396  ax-i9 1400  ax-ial 1405  ax-i5r 1406  ax-ext 2000
This theorem depends on definitions:  df-bi 110  df-nf 1326  df-sb 1624  df-clab 2005  df-cleq 2011  df-clel 2014  df-nfc 2145  df-in 2897  df-ss 2904  df-br 3735  df-opab 3789
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator