![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opabid | GIF version |
Description: The law of concretion. Special case of Theorem 9.5 of [Quine] p. 61. (Contributed by NM, 14-Apr-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
opabid | ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2560 | . . 3 ⊢ 𝑥 ∈ V | |
2 | vex 2560 | . . 3 ⊢ 𝑦 ∈ V | |
3 | 1, 2 | opex 3966 | . 2 ⊢ 〈𝑥, 𝑦〉 ∈ V |
4 | copsexg 3981 | . . 3 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝜑 ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑))) | |
5 | 4 | bicomd 129 | . 2 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ 𝜑)) |
6 | df-opab 3819 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
7 | 3, 5, 6 | elab2 2690 | 1 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 97 ↔ wb 98 = wceq 1243 ∃wex 1381 ∈ wcel 1393 〈cop 3378 {copab 3817 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-opab 3819 |
This theorem is referenced by: opelopabsb 3997 ssopab2b 4013 dmopab 4546 rnopab 4581 funopab 4935 funco 4940 fvmptss2 5247 f1ompt 5320 ovid 5617 enssdom 6242 |
Copyright terms: Public domain | W3C validator |