![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqsstr3d | GIF version |
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
Ref | Expression |
---|---|
eqsstr3d.1 | ⊢ (𝜑 → 𝐵 = 𝐴) |
eqsstr3d.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Ref | Expression |
---|---|
eqsstr3d | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsstr3d.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
2 | 1 | eqcomd 2045 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
3 | eqsstr3d.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
4 | 2, 3 | eqsstrd 2979 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1243 ⊆ wss 2917 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-11 1397 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-in 2924 df-ss 2931 |
This theorem is referenced by: ssxpbm 4756 ssxp1 4757 ssxp2 4758 suppssof1 5728 tfrlemiubacc 5944 oaword1 6050 phplem4dom 6324 archnqq 6515 |
Copyright terms: Public domain | W3C validator |