Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlemiubacc GIF version

Theorem tfrlemiubacc 5944
 Description: The union of 𝐵 satisfies the recursion rule (lemma for tfrlemi1 5946). (Contributed by Jim Kingdon, 22-Apr-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.)
Hypotheses
Ref Expression
tfrlemisucfn.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
tfrlemisucfn.2 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
tfrlemi1.3 𝐵 = { ∣ ∃𝑧𝑥𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))}
tfrlemi1.4 (𝜑𝑥 ∈ On)
tfrlemi1.5 (𝜑 → ∀𝑧𝑥𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔𝑤))))
Assertion
Ref Expression
tfrlemiubacc (𝜑 → ∀𝑢𝑥 ( 𝐵𝑢) = (𝐹‘( 𝐵𝑢)))
Distinct variable groups:   𝑓,𝑔,,𝑢,𝑤,𝑥,𝑦,𝑧,𝐴   𝑓,𝐹,𝑔,,𝑢,𝑤,𝑥,𝑦,𝑧   𝜑,𝑤,𝑦   𝑢,𝐵,𝑤,𝑓,𝑔,,𝑧   𝜑,𝑔,,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑢,𝑓)   𝐵(𝑥,𝑦)

Proof of Theorem tfrlemiubacc
StepHypRef Expression
1 tfrlemisucfn.1 . . . . . . . . 9 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
2 tfrlemisucfn.2 . . . . . . . . 9 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
3 tfrlemi1.3 . . . . . . . . 9 𝐵 = { ∣ ∃𝑧𝑥𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))}
4 tfrlemi1.4 . . . . . . . . 9 (𝜑𝑥 ∈ On)
5 tfrlemi1.5 . . . . . . . . 9 (𝜑 → ∀𝑧𝑥𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔𝑤))))
61, 2, 3, 4, 5tfrlemibfn 5942 . . . . . . . 8 (𝜑 𝐵 Fn 𝑥)
7 fndm 4998 . . . . . . . 8 ( 𝐵 Fn 𝑥 → dom 𝐵 = 𝑥)
86, 7syl 14 . . . . . . 7 (𝜑 → dom 𝐵 = 𝑥)
91, 2, 3, 4, 5tfrlemibacc 5940 . . . . . . . . . 10 (𝜑𝐵𝐴)
109unissd 3604 . . . . . . . . 9 (𝜑 𝐵 𝐴)
111recsfval 5931 . . . . . . . . 9 recs(𝐹) = 𝐴
1210, 11syl6sseqr 2992 . . . . . . . 8 (𝜑 𝐵 ⊆ recs(𝐹))
13 dmss 4534 . . . . . . . 8 ( 𝐵 ⊆ recs(𝐹) → dom 𝐵 ⊆ dom recs(𝐹))
1412, 13syl 14 . . . . . . 7 (𝜑 → dom 𝐵 ⊆ dom recs(𝐹))
158, 14eqsstr3d 2980 . . . . . 6 (𝜑𝑥 ⊆ dom recs(𝐹))
1615sselda 2945 . . . . 5 ((𝜑𝑤𝑥) → 𝑤 ∈ dom recs(𝐹))
171tfrlem9 5935 . . . . 5 (𝑤 ∈ dom recs(𝐹) → (recs(𝐹)‘𝑤) = (𝐹‘(recs(𝐹) ↾ 𝑤)))
1816, 17syl 14 . . . 4 ((𝜑𝑤𝑥) → (recs(𝐹)‘𝑤) = (𝐹‘(recs(𝐹) ↾ 𝑤)))
191tfrlem7 5933 . . . . . 6 Fun recs(𝐹)
2019a1i 9 . . . . 5 ((𝜑𝑤𝑥) → Fun recs(𝐹))
2112adantr 261 . . . . 5 ((𝜑𝑤𝑥) → 𝐵 ⊆ recs(𝐹))
228eleq2d 2107 . . . . . 6 (𝜑 → (𝑤 ∈ dom 𝐵𝑤𝑥))
2322biimpar 281 . . . . 5 ((𝜑𝑤𝑥) → 𝑤 ∈ dom 𝐵)
24 funssfv 5199 . . . . 5 ((Fun recs(𝐹) ∧ 𝐵 ⊆ recs(𝐹) ∧ 𝑤 ∈ dom 𝐵) → (recs(𝐹)‘𝑤) = ( 𝐵𝑤))
2520, 21, 23, 24syl3anc 1135 . . . 4 ((𝜑𝑤𝑥) → (recs(𝐹)‘𝑤) = ( 𝐵𝑤))
26 eloni 4112 . . . . . . . . 9 (𝑥 ∈ On → Ord 𝑥)
274, 26syl 14 . . . . . . . 8 (𝜑 → Ord 𝑥)
28 ordelss 4116 . . . . . . . 8 ((Ord 𝑥𝑤𝑥) → 𝑤𝑥)
2927, 28sylan 267 . . . . . . 7 ((𝜑𝑤𝑥) → 𝑤𝑥)
308adantr 261 . . . . . . 7 ((𝜑𝑤𝑥) → dom 𝐵 = 𝑥)
3129, 30sseqtr4d 2982 . . . . . 6 ((𝜑𝑤𝑥) → 𝑤 ⊆ dom 𝐵)
32 fun2ssres 4943 . . . . . 6 ((Fun recs(𝐹) ∧ 𝐵 ⊆ recs(𝐹) ∧ 𝑤 ⊆ dom 𝐵) → (recs(𝐹) ↾ 𝑤) = ( 𝐵𝑤))
3320, 21, 31, 32syl3anc 1135 . . . . 5 ((𝜑𝑤𝑥) → (recs(𝐹) ↾ 𝑤) = ( 𝐵𝑤))
3433fveq2d 5182 . . . 4 ((𝜑𝑤𝑥) → (𝐹‘(recs(𝐹) ↾ 𝑤)) = (𝐹‘( 𝐵𝑤)))
3518, 25, 343eqtr3d 2080 . . 3 ((𝜑𝑤𝑥) → ( 𝐵𝑤) = (𝐹‘( 𝐵𝑤)))
3635ralrimiva 2392 . 2 (𝜑 → ∀𝑤𝑥 ( 𝐵𝑤) = (𝐹‘( 𝐵𝑤)))
37 fveq2 5178 . . . 4 (𝑢 = 𝑤 → ( 𝐵𝑢) = ( 𝐵𝑤))
38 reseq2 4607 . . . . 5 (𝑢 = 𝑤 → ( 𝐵𝑢) = ( 𝐵𝑤))
3938fveq2d 5182 . . . 4 (𝑢 = 𝑤 → (𝐹‘( 𝐵𝑢)) = (𝐹‘( 𝐵𝑤)))
4037, 39eqeq12d 2054 . . 3 (𝑢 = 𝑤 → (( 𝐵𝑢) = (𝐹‘( 𝐵𝑢)) ↔ ( 𝐵𝑤) = (𝐹‘( 𝐵𝑤))))
4140cbvralv 2533 . 2 (∀𝑢𝑥 ( 𝐵𝑢) = (𝐹‘( 𝐵𝑢)) ↔ ∀𝑤𝑥 ( 𝐵𝑤) = (𝐹‘( 𝐵𝑤)))
4236, 41sylibr 137 1 (𝜑 → ∀𝑢𝑥 ( 𝐵𝑢) = (𝐹‘( 𝐵𝑢)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97   ∧ w3a 885  ∀wal 1241   = wceq 1243  ∃wex 1381   ∈ wcel 1393  {cab 2026  ∀wral 2306  ∃wrex 2307  Vcvv 2557   ∪ cun 2915   ⊆ wss 2917  {csn 3375  ⟨cop 3378  ∪ cuni 3580  Ord word 4099  Oncon0 4100  dom cdm 4345   ↾ cres 4347  Fun wfun 4896   Fn wfn 4897  ‘cfv 4902  recscrecs 5919 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-id 4030  df-iord 4103  df-on 4105  df-suc 4108  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-fv 4910  df-recs 5920 This theorem is referenced by:  tfrlemiex  5945
 Copyright terms: Public domain W3C validator