ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlem9 GIF version

Theorem tfrlem9 5935
Description: Lemma for transfinite recursion. Here we compute the value of recs (the union of all acceptable functions). (Contributed by NM, 17-Aug-1994.)
Hypothesis
Ref Expression
tfrlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Assertion
Ref Expression
tfrlem9 (𝐵 ∈ dom recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))
Distinct variable groups:   𝑥,𝑓,𝑦,𝐵   𝑓,𝐹,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑓)

Proof of Theorem tfrlem9
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eldm2g 4531 . . 3 (𝐵 ∈ dom recs(𝐹) → (𝐵 ∈ dom recs(𝐹) ↔ ∃𝑧𝐵, 𝑧⟩ ∈ recs(𝐹)))
21ibi 165 . 2 (𝐵 ∈ dom recs(𝐹) → ∃𝑧𝐵, 𝑧⟩ ∈ recs(𝐹))
3 df-recs 5920 . . . . . 6 recs(𝐹) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
43eleq2i 2104 . . . . 5 (⟨𝐵, 𝑧⟩ ∈ recs(𝐹) ↔ ⟨𝐵, 𝑧⟩ ∈ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))})
5 eluniab 3592 . . . . 5 (⟨𝐵, 𝑧⟩ ∈ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))} ↔ ∃𝑓(⟨𝐵, 𝑧⟩ ∈ 𝑓 ∧ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
64, 5bitri 173 . . . 4 (⟨𝐵, 𝑧⟩ ∈ recs(𝐹) ↔ ∃𝑓(⟨𝐵, 𝑧⟩ ∈ 𝑓 ∧ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
7 fnop 5002 . . . . . . . . . . . . . 14 ((𝑓 Fn 𝑥 ∧ ⟨𝐵, 𝑧⟩ ∈ 𝑓) → 𝐵𝑥)
8 rspe 2370 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))) → ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
9 tfrlem.1 . . . . . . . . . . . . . . . . . 18 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
109abeq2i 2148 . . . . . . . . . . . . . . . . 17 (𝑓𝐴 ↔ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
11 elssuni 3608 . . . . . . . . . . . . . . . . . 18 (𝑓𝐴𝑓 𝐴)
129recsfval 5931 . . . . . . . . . . . . . . . . . 18 recs(𝐹) = 𝐴
1311, 12syl6sseqr 2992 . . . . . . . . . . . . . . . . 17 (𝑓𝐴𝑓 ⊆ recs(𝐹))
1410, 13sylbir 125 . . . . . . . . . . . . . . . 16 (∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))) → 𝑓 ⊆ recs(𝐹))
158, 14syl 14 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))) → 𝑓 ⊆ recs(𝐹))
16 fveq2 5178 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝐵 → (𝑓𝑦) = (𝑓𝐵))
17 reseq2 4607 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝐵 → (𝑓𝑦) = (𝑓𝐵))
1817fveq2d 5182 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝐵 → (𝐹‘(𝑓𝑦)) = (𝐹‘(𝑓𝐵)))
1916, 18eqeq12d 2054 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝐵 → ((𝑓𝑦) = (𝐹‘(𝑓𝑦)) ↔ (𝑓𝐵) = (𝐹‘(𝑓𝐵))))
2019rspcv 2652 . . . . . . . . . . . . . . . . . 18 (𝐵𝑥 → (∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)) → (𝑓𝐵) = (𝐹‘(𝑓𝐵))))
21 fndm 4998 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 Fn 𝑥 → dom 𝑓 = 𝑥)
2221eleq2d 2107 . . . . . . . . . . . . . . . . . . . 20 (𝑓 Fn 𝑥 → (𝐵 ∈ dom 𝑓𝐵𝑥))
239tfrlem7 5933 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Fun recs(𝐹)
24 funssfv 5199 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((Fun recs(𝐹) ∧ 𝑓 ⊆ recs(𝐹) ∧ 𝐵 ∈ dom 𝑓) → (recs(𝐹)‘𝐵) = (𝑓𝐵))
2523, 24mp3an1 1219 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑓 ⊆ recs(𝐹) ∧ 𝐵 ∈ dom 𝑓) → (recs(𝐹)‘𝐵) = (𝑓𝐵))
2625adantrl 447 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓 ⊆ recs(𝐹) ∧ ((𝑓 Fn 𝑥𝑥 ∈ On) ∧ 𝐵 ∈ dom 𝑓)) → (recs(𝐹)‘𝐵) = (𝑓𝐵))
2721eleq1d 2106 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓 Fn 𝑥 → (dom 𝑓 ∈ On ↔ 𝑥 ∈ On))
28 onelss 4124 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (dom 𝑓 ∈ On → (𝐵 ∈ dom 𝑓𝐵 ⊆ dom 𝑓))
2927, 28syl6bir 153 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓 Fn 𝑥 → (𝑥 ∈ On → (𝐵 ∈ dom 𝑓𝐵 ⊆ dom 𝑓)))
3029imp31 243 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑓 Fn 𝑥𝑥 ∈ On) ∧ 𝐵 ∈ dom 𝑓) → 𝐵 ⊆ dom 𝑓)
31 fun2ssres 4943 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((Fun recs(𝐹) ∧ 𝑓 ⊆ recs(𝐹) ∧ 𝐵 ⊆ dom 𝑓) → (recs(𝐹) ↾ 𝐵) = (𝑓𝐵))
3231fveq2d 5182 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((Fun recs(𝐹) ∧ 𝑓 ⊆ recs(𝐹) ∧ 𝐵 ⊆ dom 𝑓) → (𝐹‘(recs(𝐹) ↾ 𝐵)) = (𝐹‘(𝑓𝐵)))
3323, 32mp3an1 1219 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑓 ⊆ recs(𝐹) ∧ 𝐵 ⊆ dom 𝑓) → (𝐹‘(recs(𝐹) ↾ 𝐵)) = (𝐹‘(𝑓𝐵)))
3430, 33sylan2 270 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓 ⊆ recs(𝐹) ∧ ((𝑓 Fn 𝑥𝑥 ∈ On) ∧ 𝐵 ∈ dom 𝑓)) → (𝐹‘(recs(𝐹) ↾ 𝐵)) = (𝐹‘(𝑓𝐵)))
3526, 34eqeq12d 2054 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓 ⊆ recs(𝐹) ∧ ((𝑓 Fn 𝑥𝑥 ∈ On) ∧ 𝐵 ∈ dom 𝑓)) → ((recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)) ↔ (𝑓𝐵) = (𝐹‘(𝑓𝐵))))
3635exbiri 364 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 ⊆ recs(𝐹) → (((𝑓 Fn 𝑥𝑥 ∈ On) ∧ 𝐵 ∈ dom 𝑓) → ((𝑓𝐵) = (𝐹‘(𝑓𝐵)) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))))
3736com3l 75 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑓 Fn 𝑥𝑥 ∈ On) ∧ 𝐵 ∈ dom 𝑓) → ((𝑓𝐵) = (𝐹‘(𝑓𝐵)) → (𝑓 ⊆ recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))))
3837exp31 346 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 Fn 𝑥 → (𝑥 ∈ On → (𝐵 ∈ dom 𝑓 → ((𝑓𝐵) = (𝐹‘(𝑓𝐵)) → (𝑓 ⊆ recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))))))
3938com34 77 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 Fn 𝑥 → (𝑥 ∈ On → ((𝑓𝐵) = (𝐹‘(𝑓𝐵)) → (𝐵 ∈ dom 𝑓 → (𝑓 ⊆ recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))))))
4039com24 81 . . . . . . . . . . . . . . . . . . . 20 (𝑓 Fn 𝑥 → (𝐵 ∈ dom 𝑓 → ((𝑓𝐵) = (𝐹‘(𝑓𝐵)) → (𝑥 ∈ On → (𝑓 ⊆ recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))))))
4122, 40sylbird 159 . . . . . . . . . . . . . . . . . . 19 (𝑓 Fn 𝑥 → (𝐵𝑥 → ((𝑓𝐵) = (𝐹‘(𝑓𝐵)) → (𝑥 ∈ On → (𝑓 ⊆ recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))))))
4241com3l 75 . . . . . . . . . . . . . . . . . 18 (𝐵𝑥 → ((𝑓𝐵) = (𝐹‘(𝑓𝐵)) → (𝑓 Fn 𝑥 → (𝑥 ∈ On → (𝑓 ⊆ recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))))))
4320, 42syld 40 . . . . . . . . . . . . . . . . 17 (𝐵𝑥 → (∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)) → (𝑓 Fn 𝑥 → (𝑥 ∈ On → (𝑓 ⊆ recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))))))
4443com24 81 . . . . . . . . . . . . . . . 16 (𝐵𝑥 → (𝑥 ∈ On → (𝑓 Fn 𝑥 → (∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)) → (𝑓 ⊆ recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))))))
4544imp4d 334 . . . . . . . . . . . . . . 15 (𝐵𝑥 → ((𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))) → (𝑓 ⊆ recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))))
4615, 45mpdi 38 . . . . . . . . . . . . . 14 (𝐵𝑥 → ((𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵))))
477, 46syl 14 . . . . . . . . . . . . 13 ((𝑓 Fn 𝑥 ∧ ⟨𝐵, 𝑧⟩ ∈ 𝑓) → ((𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵))))
4847exp4d 351 . . . . . . . . . . . 12 ((𝑓 Fn 𝑥 ∧ ⟨𝐵, 𝑧⟩ ∈ 𝑓) → (𝑥 ∈ On → (𝑓 Fn 𝑥 → (∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵))))))
4948ex 108 . . . . . . . . . . 11 (𝑓 Fn 𝑥 → (⟨𝐵, 𝑧⟩ ∈ 𝑓 → (𝑥 ∈ On → (𝑓 Fn 𝑥 → (∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))))))
5049com4r 80 . . . . . . . . . 10 (𝑓 Fn 𝑥 → (𝑓 Fn 𝑥 → (⟨𝐵, 𝑧⟩ ∈ 𝑓 → (𝑥 ∈ On → (∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))))))
5150pm2.43i 43 . . . . . . . . 9 (𝑓 Fn 𝑥 → (⟨𝐵, 𝑧⟩ ∈ 𝑓 → (𝑥 ∈ On → (∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵))))))
5251com3l 75 . . . . . . . 8 (⟨𝐵, 𝑧⟩ ∈ 𝑓 → (𝑥 ∈ On → (𝑓 Fn 𝑥 → (∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵))))))
5352imp4a 331 . . . . . . 7 (⟨𝐵, 𝑧⟩ ∈ 𝑓 → (𝑥 ∈ On → ((𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))))
5453rexlimdv 2432 . . . . . 6 (⟨𝐵, 𝑧⟩ ∈ 𝑓 → (∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵))))
5554imp 115 . . . . 5 ((⟨𝐵, 𝑧⟩ ∈ 𝑓 ∧ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))
5655exlimiv 1489 . . . 4 (∃𝑓(⟨𝐵, 𝑧⟩ ∈ 𝑓 ∧ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))
576, 56sylbi 114 . . 3 (⟨𝐵, 𝑧⟩ ∈ recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))
5857exlimiv 1489 . 2 (∃𝑧𝐵, 𝑧⟩ ∈ recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))
592, 58syl 14 1 (𝐵 ∈ dom recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  w3a 885   = wceq 1243  wex 1381  wcel 1393  {cab 2026  wral 2306  wrex 2307  wss 2917  cop 3378   cuni 3580  Oncon0 4100  dom cdm 4345  cres 4347  Fun wfun 4896   Fn wfn 4897  cfv 4902  recscrecs 5919
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-setind 4262
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-id 4030  df-iord 4103  df-on 4105  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-res 4357  df-iota 4867  df-fun 4904  df-fn 4905  df-fv 4910  df-recs 5920
This theorem is referenced by:  tfr2a  5936  tfrlemiubacc  5944
  Copyright terms: Public domain W3C validator