ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordelss Structured version   GIF version

Theorem ordelss 4065
Description: An element of an ordinal class is a subset of it. (Contributed by NM, 30-May-1994.)
Assertion
Ref Expression
ordelss ((Ord A B A) → BA)

Proof of Theorem ordelss
StepHypRef Expression
1 ordtr 4064 . 2 (Ord A → Tr A)
2 trss 3837 . . 3 (Tr A → (B ABA))
32imp 115 . 2 ((Tr A B A) → BA)
41, 3sylan 267 1 ((Ord A B A) → BA)
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97   wcel 1374  wss 2894  Tr wtr 3828  Ord word 4048
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 617  ax-5 1316  ax-7 1317  ax-gen 1318  ax-ie1 1363  ax-ie2 1364  ax-8 1376  ax-10 1377  ax-11 1378  ax-i12 1379  ax-bnd 1380  ax-4 1381  ax-17 1400  ax-i9 1404  ax-ial 1409  ax-i5r 1410  ax-ext 2004
This theorem depends on definitions:  df-bi 110  df-tru 1231  df-nf 1330  df-sb 1628  df-clab 2009  df-cleq 2015  df-clel 2018  df-nfc 2149  df-ral 2289  df-v 2537  df-in 2901  df-ss 2908  df-uni 3555  df-tr 3829  df-iord 4052
This theorem is referenced by:  ordelord  4067  onelss  4073  ordsuc  4225  smores3  5830  tfrlem1  5845  tfrlemisucaccv  5860  tfrlemiubacc  5865  nntri1  5989
  Copyright terms: Public domain W3C validator