ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl6sseqr Structured version   GIF version

Theorem syl6sseqr 2986
Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.)
Hypotheses
Ref Expression
syl6ssr.1 (φAB)
syl6ssr.2 𝐶 = B
Assertion
Ref Expression
syl6sseqr (φA𝐶)

Proof of Theorem syl6sseqr
StepHypRef Expression
1 syl6ssr.1 . 2 (φAB)
2 syl6ssr.2 . . 3 𝐶 = B
32eqcomi 2041 . 2 B = 𝐶
41, 3syl6sseq 2985 1 (φA𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1242  wss 2911
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-11 1394  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-in 2918  df-ss 2925
This theorem is referenced by:  iunpw  4177  iotanul  4825  iotass  4827  tfrlem9  5876  tfrlemibfn  5883  tfrlemiubacc  5885  tfrlemi14d  5888  uznnssnn  8296
  Copyright terms: Public domain W3C validator