Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sselda GIF version

Theorem sselda 2939
 Description: Membership deduction from subclass relationship. (Contributed by NM, 26-Jun-2014.)
Hypothesis
Ref Expression
sseld.1 (φAB)
Assertion
Ref Expression
sselda ((φ 𝐶 A) → 𝐶 B)

Proof of Theorem sselda
StepHypRef Expression
1 sseld.1 . . 3 (φAB)
21sseld 2938 . 2 (φ → (𝐶 A𝐶 B))
32imp 115 1 ((φ 𝐶 A) → 𝐶 B)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97   ∈ wcel 1390   ⊆ wss 2911 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-11 1394  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019 This theorem depends on definitions:  df-bi 110  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-in 2918  df-ss 2925 This theorem is referenced by:  elrel  4385  ffvresb  5271  1stdm  5750  tfrlem1  5864  tfrlemiubacc  5885  erinxp  6116  fundmen  6222  elprnql  6464  elprnqu  6465  un0addcl  7991  un0mulcl  7992  icoshftf1o  8629  elfzom1elfzo  8829  zpnn0elfzo  8833  iseqfveq  8907
 Copyright terms: Public domain W3C validator