ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnss Structured version   GIF version

Theorem rnss 4507
Description: Subset theorem for range. (Contributed by NM, 22-Mar-1998.)
Assertion
Ref Expression
rnss (AB → ran A ⊆ ran B)

Proof of Theorem rnss
StepHypRef Expression
1 cnvss 4451 . . 3 (ABAB)
2 dmss 4477 . . 3 (AB → dom A ⊆ dom B)
31, 2syl 14 . 2 (AB → dom A ⊆ dom B)
4 df-rn 4299 . 2 ran A = dom A
5 df-rn 4299 . 2 ran B = dom B
63, 4, 53sstr4g 2980 1 (AB → ran A ⊆ ran B)
Colors of variables: wff set class
Syntax hints:  wi 4  wss 2911  ccnv 4287  dom cdm 4288  ran crn 4289
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-v 2553  df-un 2916  df-in 2918  df-ss 2925  df-sn 3373  df-pr 3374  df-op 3376  df-br 3756  df-opab 3810  df-cnv 4296  df-dm 4298  df-rn 4299
This theorem is referenced by:  imass1  4643  imass2  4644  ssxpbm  4699  ssxp2  4701  ssrnres  4706  funssxp  5003  fssres  5009  dff2  5254  fliftf  5382  1stcof  5732  2ndcof  5733  smores  5848
  Copyright terms: Public domain W3C validator