![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > f0 | GIF version |
Description: The empty function. (Contributed by NM, 14-Aug-1999.) |
Ref | Expression |
---|---|
f0 | ⊢ ∅:∅⟶A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2037 | . . 3 ⊢ ∅ = ∅ | |
2 | fn0 4961 | . . 3 ⊢ (∅ Fn ∅ ↔ ∅ = ∅) | |
3 | 1, 2 | mpbir 134 | . 2 ⊢ ∅ Fn ∅ |
4 | rn0 4531 | . . 3 ⊢ ran ∅ = ∅ | |
5 | 0ss 3249 | . . 3 ⊢ ∅ ⊆ A | |
6 | 4, 5 | eqsstri 2969 | . 2 ⊢ ran ∅ ⊆ A |
7 | df-f 4849 | . 2 ⊢ (∅:∅⟶A ↔ (∅ Fn ∅ ∧ ran ∅ ⊆ A)) | |
8 | 3, 6, 7 | mpbir2an 848 | 1 ⊢ ∅:∅⟶A |
Colors of variables: wff set class |
Syntax hints: = wceq 1242 ⊆ wss 2911 ∅c0 3218 ran crn 4289 Fn wfn 4840 ⟶wf 4841 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 629 ax-5 1333 ax-7 1334 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-8 1392 ax-10 1393 ax-11 1394 ax-i12 1395 ax-bndl 1396 ax-4 1397 ax-14 1402 ax-17 1416 ax-i9 1420 ax-ial 1424 ax-i5r 1425 ax-ext 2019 ax-sep 3866 ax-nul 3874 ax-pow 3918 ax-pr 3935 |
This theorem depends on definitions: df-bi 110 df-3an 886 df-tru 1245 df-fal 1248 df-nf 1347 df-sb 1643 df-eu 1900 df-mo 1901 df-clab 2024 df-cleq 2030 df-clel 2033 df-nfc 2164 df-ral 2305 df-rex 2306 df-v 2553 df-dif 2914 df-un 2916 df-in 2918 df-ss 2925 df-nul 3219 df-pw 3353 df-sn 3373 df-pr 3374 df-op 3376 df-br 3756 df-opab 3810 df-id 4021 df-xp 4294 df-rel 4295 df-cnv 4296 df-co 4297 df-dm 4298 df-rn 4299 df-fun 4847 df-fn 4848 df-f 4849 |
This theorem is referenced by: f00 5024 f10 5103 |
Copyright terms: Public domain | W3C validator |