ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgon Unicode version

Theorem rdgon 5973
Description: Evaluating the recursive definition generator produces an ordinal. There is a hypothesis that the characteristic function produces ordinals on ordinal arguments. (Contributed by Jim Kingdon, 26-Jul-2019.)
Hypotheses
Ref Expression
rdgon.1  |-  ( ph  ->  F  Fn  _V )
rdgon.2  |-  ( ph  ->  A  e.  On )
rdgon.3  |-  ( ph  ->  A. x  e.  On  ( F `  x )  e.  On )
Assertion
Ref Expression
rdgon  |-  ( (
ph  /\  B  e.  On )  ->  ( rec ( F ,  A
) `  B )  e.  On )
Distinct variable groups:    x, A    x, F    ph, x
Allowed substitution hint:    B( x)

Proof of Theorem rdgon
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5178 . . . . 5  |-  ( z  =  x  ->  ( rec ( F ,  A
) `  z )  =  ( rec ( F ,  A ) `  x ) )
21eleq1d 2106 . . . 4  |-  ( z  =  x  ->  (
( rec ( F ,  A ) `  z )  e.  On  <->  ( rec ( F ,  A ) `  x
)  e.  On ) )
32imbi2d 219 . . 3  |-  ( z  =  x  ->  (
( ph  ->  ( rec ( F ,  A
) `  z )  e.  On )  <->  ( ph  ->  ( rec ( F ,  A ) `  x )  e.  On ) ) )
4 fveq2 5178 . . . . 5  |-  ( z  =  B  ->  ( rec ( F ,  A
) `  z )  =  ( rec ( F ,  A ) `  B ) )
54eleq1d 2106 . . . 4  |-  ( z  =  B  ->  (
( rec ( F ,  A ) `  z )  e.  On  <->  ( rec ( F ,  A ) `  B
)  e.  On ) )
65imbi2d 219 . . 3  |-  ( z  =  B  ->  (
( ph  ->  ( rec ( F ,  A
) `  z )  e.  On )  <->  ( ph  ->  ( rec ( F ,  A ) `  B )  e.  On ) ) )
7 r19.21v 2396 . . . 4  |-  ( A. x  e.  z  ( ph  ->  ( rec ( F ,  A ) `  x )  e.  On ) 
<->  ( ph  ->  A. x  e.  z  ( rec ( F ,  A ) `
 x )  e.  On ) )
8 rdgon.2 . . . . . . . . 9  |-  ( ph  ->  A  e.  On )
9 fvres 5198 . . . . . . . . . . . . . 14  |-  ( x  e.  z  ->  (
( rec ( F ,  A )  |`  z ) `  x
)  =  ( rec ( F ,  A
) `  x )
)
109eleq1d 2106 . . . . . . . . . . . . 13  |-  ( x  e.  z  ->  (
( ( rec ( F ,  A )  |`  z ) `  x
)  e.  On  <->  ( rec ( F ,  A ) `
 x )  e.  On ) )
1110adantl 262 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  z )  ->  (
( ( rec ( F ,  A )  |`  z ) `  x
)  e.  On  <->  ( rec ( F ,  A ) `
 x )  e.  On ) )
12 rdgon.3 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. x  e.  On  ( F `  x )  e.  On )
13 fveq2 5178 . . . . . . . . . . . . . . . . 17  |-  ( x  =  w  ->  ( F `  x )  =  ( F `  w ) )
1413eleq1d 2106 . . . . . . . . . . . . . . . 16  |-  ( x  =  w  ->  (
( F `  x
)  e.  On  <->  ( F `  w )  e.  On ) )
1514cbvralv 2533 . . . . . . . . . . . . . . 15  |-  ( A. x  e.  On  ( F `  x )  e.  On  <->  A. w  e.  On  ( F `  w )  e.  On )
1612, 15sylib 127 . . . . . . . . . . . . . 14  |-  ( ph  ->  A. w  e.  On  ( F `  w )  e.  On )
17 fveq2 5178 . . . . . . . . . . . . . . . 16  |-  ( w  =  ( ( rec ( F ,  A
)  |`  z ) `  x )  ->  ( F `  w )  =  ( F `  ( ( rec ( F ,  A )  |`  z ) `  x
) ) )
1817eleq1d 2106 . . . . . . . . . . . . . . 15  |-  ( w  =  ( ( rec ( F ,  A
)  |`  z ) `  x )  ->  (
( F `  w
)  e.  On  <->  ( F `  ( ( rec ( F ,  A )  |`  z ) `  x
) )  e.  On ) )
1918rspcv 2652 . . . . . . . . . . . . . 14  |-  ( ( ( rec ( F ,  A )  |`  z ) `  x
)  e.  On  ->  ( A. w  e.  On  ( F `  w )  e.  On  ->  ( F `  ( ( rec ( F ,  A
)  |`  z ) `  x ) )  e.  On ) )
2016, 19syl5com 26 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( rec ( F ,  A
)  |`  z ) `  x )  e.  On  ->  ( F `  (
( rec ( F ,  A )  |`  z ) `  x
) )  e.  On ) )
2120adantr 261 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  z )  ->  (
( ( rec ( F ,  A )  |`  z ) `  x
)  e.  On  ->  ( F `  ( ( rec ( F ,  A )  |`  z
) `  x )
)  e.  On ) )
2211, 21sylbird 159 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  z )  ->  (
( rec ( F ,  A ) `  x )  e.  On  ->  ( F `  (
( rec ( F ,  A )  |`  z ) `  x
) )  e.  On ) )
2322ralimdva 2387 . . . . . . . . . 10  |-  ( ph  ->  ( A. x  e.  z  ( rec ( F ,  A ) `  x )  e.  On  ->  A. x  e.  z  ( F `  (
( rec ( F ,  A )  |`  z ) `  x
) )  e.  On ) )
24 vex 2560 . . . . . . . . . . 11  |-  z  e. 
_V
25 iunon 5899 . . . . . . . . . . 11  |-  ( ( z  e.  _V  /\  A. x  e.  z  ( F `  ( ( rec ( F ,  A )  |`  z
) `  x )
)  e.  On )  ->  U_ x  e.  z  ( F `  (
( rec ( F ,  A )  |`  z ) `  x
) )  e.  On )
2624, 25mpan 400 . . . . . . . . . 10  |-  ( A. x  e.  z  ( F `  ( ( rec ( F ,  A
)  |`  z ) `  x ) )  e.  On  ->  U_ x  e.  z  ( F `  ( ( rec ( F ,  A )  |`  z ) `  x
) )  e.  On )
2723, 26syl6 29 . . . . . . . . 9  |-  ( ph  ->  ( A. x  e.  z  ( rec ( F ,  A ) `  x )  e.  On  ->  U_ x  e.  z  ( F `  (
( rec ( F ,  A )  |`  z ) `  x
) )  e.  On ) )
28 onun2 4216 . . . . . . . . 9  |-  ( ( A  e.  On  /\  U_ x  e.  z  ( F `  ( ( rec ( F ,  A )  |`  z
) `  x )
)  e.  On )  ->  ( A  u.  U_ x  e.  z  ( F `  ( ( rec ( F ,  A )  |`  z
) `  x )
) )  e.  On )
298, 27, 28syl6an 1323 . . . . . . . 8  |-  ( ph  ->  ( A. x  e.  z  ( rec ( F ,  A ) `  x )  e.  On  ->  ( A  u.  U_ x  e.  z  ( F `  ( ( rec ( F ,  A
)  |`  z ) `  x ) ) )  e.  On ) )
3029adantr 261 . . . . . . 7  |-  ( (
ph  /\  z  e.  On )  ->  ( A. x  e.  z  ( rec ( F ,  A
) `  x )  e.  On  ->  ( A  u.  U_ x  e.  z  ( F `  (
( rec ( F ,  A )  |`  z ) `  x
) ) )  e.  On ) )
31 rdgon.1 . . . . . . . . . 10  |-  ( ph  ->  F  Fn  _V )
3231, 8jca 290 . . . . . . . . 9  |-  ( ph  ->  ( F  Fn  _V  /\  A  e.  On ) )
33 rdgivallem 5968 . . . . . . . . . 10  |-  ( ( F  Fn  _V  /\  A  e.  On  /\  z  e.  On )  ->  ( rec ( F ,  A
) `  z )  =  ( A  u.  U_ x  e.  z  ( F `  ( ( rec ( F ,  A )  |`  z
) `  x )
) ) )
34333expa 1104 . . . . . . . . 9  |-  ( ( ( F  Fn  _V  /\  A  e.  On )  /\  z  e.  On )  ->  ( rec ( F ,  A ) `  z )  =  ( A  u.  U_ x  e.  z  ( F `  ( ( rec ( F ,  A )  |`  z ) `  x
) ) ) )
3532, 34sylan 267 . . . . . . . 8  |-  ( (
ph  /\  z  e.  On )  ->  ( rec ( F ,  A
) `  z )  =  ( A  u.  U_ x  e.  z  ( F `  ( ( rec ( F ,  A )  |`  z
) `  x )
) ) )
3635eleq1d 2106 . . . . . . 7  |-  ( (
ph  /\  z  e.  On )  ->  ( ( rec ( F ,  A ) `  z
)  e.  On  <->  ( A  u.  U_ x  e.  z  ( F `  (
( rec ( F ,  A )  |`  z ) `  x
) ) )  e.  On ) )
3730, 36sylibrd 158 . . . . . 6  |-  ( (
ph  /\  z  e.  On )  ->  ( A. x  e.  z  ( rec ( F ,  A
) `  x )  e.  On  ->  ( rec ( F ,  A ) `
 z )  e.  On ) )
3837expcom 109 . . . . 5  |-  ( z  e.  On  ->  ( ph  ->  ( A. x  e.  z  ( rec ( F ,  A ) `
 x )  e.  On  ->  ( rec ( F ,  A ) `
 z )  e.  On ) ) )
3938a2d 23 . . . 4  |-  ( z  e.  On  ->  (
( ph  ->  A. x  e.  z  ( rec ( F ,  A ) `
 x )  e.  On )  ->  ( ph  ->  ( rec ( F ,  A ) `  z )  e.  On ) ) )
407, 39syl5bi 141 . . 3  |-  ( z  e.  On  ->  ( A. x  e.  z 
( ph  ->  ( rec ( F ,  A
) `  x )  e.  On )  ->  ( ph  ->  ( rec ( F ,  A ) `  z )  e.  On ) ) )
413, 6, 40tfis3 4309 . 2  |-  ( B  e.  On  ->  ( ph  ->  ( rec ( F ,  A ) `  B )  e.  On ) )
4241impcom 116 1  |-  ( (
ph  /\  B  e.  On )  ->  ( rec ( F ,  A
) `  B )  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    = wceq 1243    e. wcel 1393   A.wral 2306   _Vcvv 2557    u. cun 2915   U_ciun 3657   Oncon0 4100    |` cres 4347    Fn wfn 4897   ` cfv 4902   reccrdg 5956
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-id 4030  df-iord 4103  df-on 4105  df-suc 4108  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-recs 5920  df-irdg 5957
This theorem is referenced by:  oacl  6040  omcl  6041  oeicl  6042
  Copyright terms: Public domain W3C validator