ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exp43 Structured version   GIF version

Theorem exp43 354
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
exp43.1 (((φ ψ) (χ θ)) → τ)
Assertion
Ref Expression
exp43 (φ → (ψ → (χ → (θτ))))

Proof of Theorem exp43
StepHypRef Expression
1 exp43.1 . . 3 (((φ ψ) (χ θ)) → τ)
21ex 108 . 2 ((φ ψ) → ((χ θ) → τ))
32exp4b 349 1 (φ → (ψ → (χ → (θτ))))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  exp53  359  funssres  4868  fvopab3ig  5171  fvmptt  5187  tfri3  5875  nnmordi  6000
  Copyright terms: Public domain W3C validator