ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exp4a Structured version   GIF version

Theorem exp4a 348
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
exp4a.1 (φ → (ψ → ((χ θ) → τ)))
Assertion
Ref Expression
exp4a (φ → (ψ → (χ → (θτ))))

Proof of Theorem exp4a
StepHypRef Expression
1 exp4a.1 . 2 (φ → (ψ → ((χ θ) → τ)))
2 impexp 250 . 2 (((χ θ) → τ) ↔ (χ → (θτ)))
31, 2syl6ib 150 1 (φ → (ψ → (χ → (θτ))))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  exp4b  349  exp4d  351  exp45  356  exp5c  358  tfri3  5894  nnmordi  6025
  Copyright terms: Public domain W3C validator