ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  jcab Structured version   GIF version

Theorem jcab 535
Description: Distributive law for implication over conjunction. Compare Theorem *4.76 of [WhiteheadRussell] p. 121. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 27-Nov-2013.)
Assertion
Ref Expression
jcab ((φ → (ψ χ)) ↔ ((φψ) (φχ)))

Proof of Theorem jcab
StepHypRef Expression
1 simpl 102 . . . 4 ((ψ χ) → ψ)
21imim2i 12 . . 3 ((φ → (ψ χ)) → (φψ))
3 simpr 103 . . . 4 ((ψ χ) → χ)
43imim2i 12 . . 3 ((φ → (ψ χ)) → (φχ))
52, 4jca 290 . 2 ((φ → (ψ χ)) → ((φψ) (φχ)))
6 pm3.43 534 . 2 (((φψ) (φχ)) → (φ → (ψ χ)))
75, 6impbii 117 1 ((φ → (ψ χ)) ↔ ((φψ) (φχ)))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97  wb 98
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  pm4.76  536  pm5.44  833  2eu4  1990  ssconb  3070  ssin  3153  raaan  3321  tfri3  5894
  Copyright terms: Public domain W3C validator