ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm4.76 Structured version   GIF version

Theorem pm4.76 536
Description: Theorem *4.76 of [WhiteheadRussell] p. 121. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm4.76 (((φψ) (φχ)) ↔ (φ → (ψ χ)))

Proof of Theorem pm4.76
StepHypRef Expression
1 jcab 535 . 2 ((φ → (ψ χ)) ↔ ((φψ) (φχ)))
21bicomi 123 1 (((φψ) (φχ)) ↔ (φ → (ψ χ)))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97  wb 98
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  sbanv  1766  fun11  4909
  Copyright terms: Public domain W3C validator