ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm3.43 Structured version   GIF version

Theorem pm3.43 534
Description: Theorem *3.43 (Comp) of [WhiteheadRussell] p. 113. (Contributed by NM, 3-Jan-2005.) (Revised by NM, 27-Nov-2013.)
Assertion
Ref Expression
pm3.43 (((φψ) (φχ)) → (φ → (ψ χ)))

Proof of Theorem pm3.43
StepHypRef Expression
1 pm3.43i 258 . 2 ((φψ) → ((φχ) → (φ → (ψ χ))))
21imp 115 1 (((φψ) (φχ)) → (φ → (ψ χ)))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101
This theorem is referenced by:  jcab  535  sbequilem  1716  eqvinc  2661  eqvincg  2662
  Copyright terms: Public domain W3C validator