ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralrimi Unicode version

Theorem ralrimi 2390
Description: Inference from Theorem 19.21 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 10-Oct-1999.)
Hypotheses
Ref Expression
ralrimi.1  |-  F/ x ph
ralrimi.2  |-  ( ph  ->  ( x  e.  A  ->  ps ) )
Assertion
Ref Expression
ralrimi  |-  ( ph  ->  A. x  e.  A  ps )

Proof of Theorem ralrimi
StepHypRef Expression
1 ralrimi.1 . . 3  |-  F/ x ph
2 ralrimi.2 . . 3  |-  ( ph  ->  ( x  e.  A  ->  ps ) )
31, 2alrimi 1415 . 2  |-  ( ph  ->  A. x ( x  e.  A  ->  ps ) )
4 df-ral 2311 . 2  |-  ( A. x  e.  A  ps  <->  A. x ( x  e.  A  ->  ps )
)
53, 4sylibr 137 1  |-  ( ph  ->  A. x  e.  A  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1241   F/wnf 1349    e. wcel 1393   A.wral 2306
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-gen 1338  ax-4 1400
This theorem depends on definitions:  df-bi 110  df-nf 1350  df-ral 2311
This theorem is referenced by:  ralrimiv  2391  reximdai  2417  r19.12  2422  rexlimd  2430  rexlimd2  2431  r19.29af2  2452  r19.37  2462  ralidm  3321  iineq2d  3677  mpteq2da  3846  onintonm  4243  mpteqb  5261  eusvobj2  5498  tfri3  5953
  Copyright terms: Public domain W3C validator