![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > a2d | Unicode version |
Description: Deduction distributing an embedded antecedent. (Contributed by NM, 23-Jun-1994.) |
Ref | Expression |
---|---|
a2d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
a2d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | a2d.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ax-2 6 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 |
This theorem is referenced by: mpdd 36 imim2d 48 imim3i 55 loowoz 96 cbv1 1632 ralimdaa 2386 reuss2 3217 finds2 4324 ssrel 4428 ssrel2 4430 ssrelrel 4440 funfvima2 5391 tfrlem1 5923 tfrlemi1 5946 tfri3 5953 rdgon 5973 nneneq 6320 ac6sfi 6352 pitonn 6924 nnaddcl 7934 nnmulcl 7935 zaddcllempos 8282 zaddcllemneg 8284 peano5uzti 8346 uzind2 8350 fzind 8353 zindd 8356 uzaddcl 8529 frec2uzltd 9189 iseqss 9226 iseqfveq2 9228 iseqshft2 9232 monoord 9235 iseqsplit 9238 iseqcaopr3 9240 iseqid3s 9246 iseqhomo 9248 expivallem 9256 expcllem 9266 expap0 9285 mulexp 9294 expadd 9297 expmul 9300 leexp2r 9308 leexp1a 9309 bernneq 9369 cjexp 9493 resqrexlemover 9608 resqrexlemdecn 9610 resqrexlemlo 9611 resqrexlemcalc3 9614 absexp 9675 nn0seqcvgd 9880 ialginv 9886 ialgcvga 9890 ialgfx 9891 |
Copyright terms: Public domain | W3C validator |