![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfra1 | Unicode version |
Description: ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfra1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2311 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | nfa1 1434 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | nfxfr 1363 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-ial 1427 |
This theorem depends on definitions: df-bi 110 df-nf 1350 df-ral 2311 |
This theorem is referenced by: nfra2xy 2364 r19.12 2422 ralbi 2445 rexbi 2446 nfss 2938 ralidm 3321 nfii1 3688 dfiun2g 3689 mpteq12f 3837 reusv1 4190 ralxfrALT 4199 peano2 4318 fun11iun 5147 fvmptssdm 5255 ffnfv 5323 riota5f 5492 mpt2eq123 5564 tfri3 5953 nneneq 6320 caucvgsrlemgt1 6879 indstr 8536 bj-rspgt 9925 |
Copyright terms: Public domain | W3C validator |