![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biimpar | Unicode version |
Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
Ref | Expression |
---|---|
biimpa.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
biimpar |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimpa.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | biimprd 147 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | imp 115 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: exbiri 364 bitr 441 eqtr 2057 opabss 3821 euotd 3991 wetriext 4301 sosng 4413 xpsspw 4450 brcogw 4504 funimaexglem 4982 funfni 4999 fnco 5007 fnssres 5012 fn0 5018 fnimadisj 5019 fnimaeq0 5020 foco 5116 foimacnv 5144 fvelimab 5229 fvopab3ig 5246 dff3im 5312 dffo4 5315 fmptco 5330 f1eqcocnv 5431 f1ocnv2d 5704 fnexALT 5740 xp1st 5792 xp2nd 5793 tfrlemiubacc 5944 tfri2d 5950 tfri3 5953 ecelqsg 6159 elqsn0m 6174 fidifsnen 6331 recclnq 6490 nq0a0 6555 qreccl 8576 difelfzle 8992 frec2uzlt2d 9190 caucvgrelemcau 9579 recvalap 9693 fzomaxdiflem 9708 |
Copyright terms: Public domain | W3C validator |