Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfopd | Unicode version |
Description: Deduction version of bound-variable hypothesis builder nfop 3565. This shows how the deduction version of a not-free theorem such as nfop 3565 can be created from the corresponding not-free inference theorem. (Contributed by NM, 4-Feb-2008.) |
Ref | Expression |
---|---|
nfopd.2 | |
nfopd.3 |
Ref | Expression |
---|---|
nfopd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfaba1 2183 | . . 3 | |
2 | nfaba1 2183 | . . 3 | |
3 | 1, 2 | nfop 3565 | . 2 |
4 | nfopd.2 | . . 3 | |
5 | nfopd.3 | . . 3 | |
6 | nfnfc1 2181 | . . . . 5 | |
7 | nfnfc1 2181 | . . . . 5 | |
8 | 6, 7 | nfan 1457 | . . . 4 |
9 | abidnf 2709 | . . . . . 6 | |
10 | 9 | adantr 261 | . . . . 5 |
11 | abidnf 2709 | . . . . . 6 | |
12 | 11 | adantl 262 | . . . . 5 |
13 | 10, 12 | opeq12d 3557 | . . . 4 |
14 | 8, 13 | nfceqdf 2177 | . . 3 |
15 | 4, 5, 14 | syl2anc 391 | . 2 |
16 | 3, 15 | mpbii 136 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 97 wb 98 wal 1241 wceq 1243 wcel 1393 cab 2026 wnfc 2165 cop 3378 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-un 2922 df-sn 3381 df-pr 3382 df-op 3384 |
This theorem is referenced by: nfbrd 3807 nfovd 5534 |
Copyright terms: Public domain | W3C validator |