ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfbrd Unicode version

Theorem nfbrd 3801
Description: Deduction version of bound-variable hypothesis builder nfbr 3802. (Contributed by NM, 13-Dec-2005.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nfbrd.2  F/_
nfbrd.3  F/_ R
nfbrd.4  F/_
Assertion
Ref Expression
nfbrd  F/  R

Proof of Theorem nfbrd
StepHypRef Expression
1 df-br 3759 . 2  R  <. ,  >.  R
2 nfbrd.2 . . . 4  F/_
3 nfbrd.4 . . . 4  F/_
42, 3nfopd 3560 . . 3  F/_ <. ,  >.
5 nfbrd.3 . . 3  F/_ R
64, 5nfeld 2193 . 2  F/ <. ,  >.  R
71, 6nfxfrd 1364 1  F/  R
Colors of variables: wff set class
Syntax hints:   wi 4   F/wnf 1349   wcel 1393   F/_wnfc 2165   <.cop 3373   class class class wbr 3758
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2556  df-un 2919  df-sn 3376  df-pr 3377  df-op 3379  df-br 3759
This theorem is referenced by:  nfbr  3802
  Copyright terms: Public domain W3C validator