ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfop Unicode version

Theorem nfop 3565
Description: Bound-variable hypothesis builder for ordered pairs. (Contributed by NM, 14-Nov-1995.)
Hypotheses
Ref Expression
nfop.1  |-  F/_ x A
nfop.2  |-  F/_ x B
Assertion
Ref Expression
nfop  |-  F/_ x <. A ,  B >.

Proof of Theorem nfop
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-op 3384 . 2  |-  <. A ,  B >.  =  { y  |  ( A  e. 
_V  /\  B  e.  _V  /\  y  e.  { { A } ,  { A ,  B } } ) }
2 nfop.1 . . . . 5  |-  F/_ x A
32nfel1 2188 . . . 4  |-  F/ x  A  e.  _V
4 nfop.2 . . . . 5  |-  F/_ x B
54nfel1 2188 . . . 4  |-  F/ x  B  e.  _V
62nfsn 3430 . . . . . 6  |-  F/_ x { A }
72, 4nfpr 3420 . . . . . 6  |-  F/_ x { A ,  B }
86, 7nfpr 3420 . . . . 5  |-  F/_ x { { A } ,  { A ,  B } }
98nfcri 2172 . . . 4  |-  F/ x  y  e.  { { A } ,  { A ,  B } }
103, 5, 9nf3an 1458 . . 3  |-  F/ x
( A  e.  _V  /\  B  e.  _V  /\  y  e.  { { A } ,  { A ,  B } } )
1110nfab 2182 . 2  |-  F/_ x { y  |  ( A  e.  _V  /\  B  e.  _V  /\  y  e.  { { A } ,  { A ,  B } } ) }
121, 11nfcxfr 2175 1  |-  F/_ x <. A ,  B >.
Colors of variables: wff set class
Syntax hints:    /\ w3a 885    e. wcel 1393   {cab 2026   F/_wnfc 2165   _Vcvv 2557   {csn 3375   {cpr 3376   <.cop 3378
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-un 2922  df-sn 3381  df-pr 3382  df-op 3384
This theorem is referenced by:  nfopd  3566  moop2  3988  fliftfuns  5438  dfmpt2  5844  qliftfuns  6190  caucvgprprlemaddq  6806  nfiseq  9218
  Copyright terms: Public domain W3C validator