Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfop | Unicode version |
Description: Bound-variable hypothesis builder for ordered pairs. (Contributed by NM, 14-Nov-1995.) |
Ref | Expression |
---|---|
nfop.1 | |
nfop.2 |
Ref | Expression |
---|---|
nfop |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-op 3384 | . 2 | |
2 | nfop.1 | . . . . 5 | |
3 | 2 | nfel1 2188 | . . . 4 |
4 | nfop.2 | . . . . 5 | |
5 | 4 | nfel1 2188 | . . . 4 |
6 | 2 | nfsn 3430 | . . . . . 6 |
7 | 2, 4 | nfpr 3420 | . . . . . 6 |
8 | 6, 7 | nfpr 3420 | . . . . 5 |
9 | 8 | nfcri 2172 | . . . 4 |
10 | 3, 5, 9 | nf3an 1458 | . . 3 |
11 | 10 | nfab 2182 | . 2 |
12 | 1, 11 | nfcxfr 2175 | 1 |
Colors of variables: wff set class |
Syntax hints: w3a 885 wcel 1393 cab 2026 wnfc 2165 cvv 2557 csn 3375 cpr 3376 cop 3378 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-un 2922 df-sn 3381 df-pr 3382 df-op 3384 |
This theorem is referenced by: nfopd 3566 moop2 3988 fliftfuns 5438 dfmpt2 5844 qliftfuns 6190 caucvgprprlemaddq 6806 nfiseq 9218 |
Copyright terms: Public domain | W3C validator |