Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfceqdf | Unicode version |
Description: An equality theorem for effectively not free. (Contributed by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
nfceqdf.1 | |
nfceqdf.2 |
Ref | Expression |
---|---|
nfceqdf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfceqdf.1 | . . . 4 | |
2 | nfceqdf.2 | . . . . 5 | |
3 | 2 | eleq2d 2107 | . . . 4 |
4 | 1, 3 | nfbidf 1432 | . . 3 |
5 | 4 | albidv 1705 | . 2 |
6 | df-nfc 2167 | . 2 | |
7 | df-nfc 2167 | . 2 | |
8 | 5, 6, 7 | 3bitr4g 212 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 98 wal 1241 wceq 1243 wnf 1349 wcel 1393 wnfc 2165 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-4 1400 ax-17 1419 ax-ial 1427 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-nf 1350 df-cleq 2033 df-clel 2036 df-nfc 2167 |
This theorem is referenced by: nfopd 3566 dfnfc2 3598 nfimad 4677 nffvd 5187 |
Copyright terms: Public domain | W3C validator |