ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfcxfrd Unicode version

Theorem nfcxfrd 2176
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfceqi.1  |-  A  =  B
nfcxfrd.2  |-  ( ph  -> 
F/_ x B )
Assertion
Ref Expression
nfcxfrd  |-  ( ph  -> 
F/_ x A )

Proof of Theorem nfcxfrd
StepHypRef Expression
1 nfcxfrd.2 . 2  |-  ( ph  -> 
F/_ x B )
2 nfceqi.1 . . 3  |-  A  =  B
32nfceqi 2174 . 2  |-  ( F/_ x A  <->  F/_ x B )
41, 3sylibr 137 1  |-  ( ph  -> 
F/_ x A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1243   F/_wnfc 2165
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-4 1400  ax-17 1419  ax-ial 1427  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-nf 1350  df-cleq 2033  df-clel 2036  df-nfc 2167
This theorem is referenced by:  nfcsb1d  2880  nfcsbd  2883  nfifd  3355  nfunid  3587  nfiotadxy  4870  nfriotadxy  5476  nfovd  5534  nfnegd  7207
  Copyright terms: Public domain W3C validator