Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexab2 Unicode version

Theorem rexab2 2707
 Description: Existential quantification over a class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
ralab2.1
Assertion
Ref Expression
rexab2
Distinct variable groups:   ,   ,   ,   ,
Allowed substitution hints:   ()   ()   ()

Proof of Theorem rexab2
StepHypRef Expression
1 df-rex 2312 . 2
2 nfsab1 2030 . . . 4
3 nfv 1421 . . . 4
42, 3nfan 1457 . . 3
5 nfv 1421 . . 3
6 eleq1 2100 . . . . 5
7 abid 2028 . . . . 5
86, 7syl6bb 185 . . . 4
9 ralab2.1 . . . 4
108, 9anbi12d 442 . . 3
114, 5, 10cbvex 1639 . 2
121, 11bitri 173 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 97   wb 98  wex 1381   wcel 1393  cab 2026  wrex 2307 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-11 1397  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-rex 2312 This theorem is referenced by:  rexrab2  2708
 Copyright terms: Public domain W3C validator