Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > morex | Unicode version |
Description: Derive membership from uniqueness. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
morex.1 | |
morex.2 |
Ref | Expression |
---|---|
morex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 2312 | . . . 4 | |
2 | exancom 1499 | . . . 4 | |
3 | 1, 2 | bitri 173 | . . 3 |
4 | nfmo1 1912 | . . . . . 6 | |
5 | nfe1 1385 | . . . . . 6 | |
6 | 4, 5 | nfan 1457 | . . . . 5 |
7 | mopick 1978 | . . . . 5 | |
8 | 6, 7 | alrimi 1415 | . . . 4 |
9 | morex.1 | . . . . 5 | |
10 | morex.2 | . . . . . 6 | |
11 | eleq1 2100 | . . . . . 6 | |
12 | 10, 11 | imbi12d 223 | . . . . 5 |
13 | 9, 12 | spcv 2646 | . . . 4 |
14 | 8, 13 | syl 14 | . . 3 |
15 | 3, 14 | sylan2b 271 | . 2 |
16 | 15 | ancoms 255 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 97 wb 98 wal 1241 wceq 1243 wex 1381 wcel 1393 wmo 1901 wrex 2307 cvv 2557 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-rex 2312 df-v 2559 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |